154 research outputs found

    Generation of Multivirus-specific T Cells to Prevent/treat Viral Infections after Allogeneic Hematopoietic Stem Cell Transplant

    Get PDF
    Viral infections cause morbidity and mortality in allogeneic hematopoietic stem cell transplant (HSCT) recipients. We and others have successfully generated and infused T-cells specific for Epstein Barr virus (EBV), cytomegalovirus (CMV) and Adenovirus (Adv) using monocytes and EBV-transformed lymphoblastoid cell (EBV-LCL) gene-modified with an adenovirus vector as antigen presenting cells (APCs). As few as 2x105/kg trivirus-specific cytotoxic T lymphocytes (CTL) proliferated by several logs after infusion and appeared to prevent and treat even severe viral disease resistant to other available therapies. The broader implementation of this encouraging approach is limited by high production costs, complexity of manufacture and the prolonged time (4-6 weeks for EBV-LCL generation, and 4-8 weeks for CTL manufacture – total 10-14 weeks) for preparation. To overcome these limitations we have developed a new, GMP-compliant CTL production protocol. First, in place of adenovectors to stimulate T-cells we use dendritic cells (DCs) nucleofected with DNA plasmids encoding LMP2, EBNA1 and BZLF1 (EBV), Hexon and Penton (Adv), and pp65 and IE1 (CMV) as antigen-presenting cells. These APCs reactivate T cells specific for all the stimulating antigens. Second, culture of activated T-cells in the presence of IL-4 (1,000U/ml) and IL-7 (10ng/ml) increases and sustains the repertoire and frequency of specific T cells in our lines. Third, we have used a new, gas permeable culture device (G-Rex) that promotes the expansion and survival of large cell numbers after a single stimulation, thus removing the requirement for EBV-LCLs and reducing technician intervention. By implementing these changes we can now produce multispecific CTL targeting EBV, CMV, and Adv at a cost per 106 cells that is reduced by >90%, and in just 10 days rather than 10 weeks using an approach that may be extended to additional protective viral antigens. Our FDA-approved approach should be of value for prophylactic and treatment applications for high risk allogeneic HSCT recipients

    Adenoviral Infections in Hematopoietic Stem Cell Transplantation

    Get PDF
    AbstractAdenoviruses are lytic DNA viruses that are ubiquitous in human communities. In total, 51 different serotypes with varying tissue tropisms have been identified. Adenovirus infections, although frequent, are rarely fatal in immunocompetent individuals who have potent innate and adaptive immunity. But in immunosuppressed individuals, adenoviruses are a significant cause of morbidity and mortality, with limited treatment options. In particular, pediatric recipients of allogeneic hematopoietic stem cell transplantation frequently develop infections early in the posttransplantation period. Because the endogenous recovery of adenovirus-specific T cells has proven important in controlling infection, we explore the potential of adoptive T-cell immunotherapy as a therapeutic strategy. We discuss the advantages and limitations of T-cell therapy for the prophylaxis and treatment of adenovirus infection posttransplantation

    Chimeric Antigen Receptor Signaling Domains Differentially Regulate Proliferation and Native T Cell Receptor Function in Virus-Specific T Cells

    Get PDF
    The efficacy of T cells expressing chimeric antigen receptors (CARs) for solid tumors has been limited by insufficient CAR T cell expansion and persistence. The use of virus-specific T cells (VSTs) as carriers for CARs may overcome this limitation since CAR-VSTs can be boosted by viral vaccines or oncolytic viruses. However, there is limited understanding of the optimal combination of endodomains and their influence on the native T cell receptor (TCR) in VSTs. We therefore compared the function of GD2.CARs expressing the TCR zeta chain (ζ) alone or combined with endodomains from CD28 and 4-1BB in varicella zoster virus-specific (VZV) T cells. VZVSTs expressing GD2-CARs recognized VZV-derived peptides and killed GD2-expressing tumor cells. However, after repeated stimulation through their native TCR, the expansion of GD2-CAR.CD28ζ-VZVSTs was 3.3-fold greater (p < 0.001) than non-transduced VZVSTs, whereas GD2-CARζ- and GD2-CAR.41BBζ inhibited VZVST expansion (p < 0.01). Compared to control VZVSTs, GD2-CAR.ζ VZVSTs showed a greater frequency of apoptotic (p < 0.01) T cells, whereas prolonged downregulation of the native αβ TCR was observed in GD2-CAR.41BBζ VZVSTs (p < 0.001). We confirmed that CD28ζ can best maintain TCR function by expressing GD2.CARs in Epstein-Barr virus-specific T cells and CD19-CARs in VZVSTs. In response to CAR stimulation VSTs with CD28ζ endodomains also showed the greatest expansion (6 fold > GD2-CAR.41BBζ VZVSTs (p < 0.001), however anti-tumor efficacy was superior in GD2-CAR.41BBζ-VZVSTs. These findings demonstrate that CAR signaling domains can enhance or diminish the function of the native TCR and indicate that only CD28ζ may preserve the function of the native TCR in tonically signaling CAR-VSTs

    Evidence for the Presentation of Major Histocompatibility Complex Class I–restricted Epstein-Barr Virus Nuclear Antigen 1 Peptides to CD8+ T Lymphocytes

    Get PDF
    The Epstein-Barr virus (EBV)-encoded nuclear antigen 1 (EBNA1) is expressed in all EBV-associated tumors, making it an important target for immunotherapy. However, evidence for major histocompatibility complex (MHC) class I–restricted EBNA1 peptides endogenously presented by EBV-transformed B and tumor cells remains elusive. Here we describe for the first time the identification of an endogenously processed human histocompatibility leukocyte antigen (HLA)-B8–restricted EBNA1 peptide that is recognized by CD8+ T cells. T cell recognition could be inhibited by the treatment of target cells with proteasome inhibitors that block the MHC class I antigen processing pathway, but not by an inhibitor (chloroquine) of MHC class II antigen processing. We also demonstrate that new protein synthesis is required for the generation of the HLA-B8 epitope for T cell recognition, suggesting that defective ribosomal products (DRiPs) are the major source of T cell epitopes. Experiments with protease inhibitors indicate that some serine proteases may participate in the degradation of EBNA1 DRiPs before they are further processed by proteasomes. These findings not only provide the first evidence of the presentation of an MHC class I–restricted EBNA1 epitope to CD8+ T cells, but also offer new insight into the molecular mechanisms involved in the processing and presentation of EBNA1

    Finding a way: long-term care homes to support dementia

    Get PDF
    An ageing demographic has increased the number of people with dementia. Although dementia is commonly associated with memory loss, other early symptoms include difficulty with wayfinding. Dementia alters visuo-spatial perception and the processes used to interpret the physical environment. The role of the design of the physical environment for people with dementia has gained increased recognition. Despite this, design for dementia is often overlooked, focusing on issues relating to physical impairment. This paper presents the results of a PhD study and aims to examine the role of the design of the physical environment in supporting wayfinding for people with dementia living in long-term care settings in Northern Ireland. Mixed methods combined the observation of wayfinding walks and conversational style interviews to elicit perspectives and experiences of residents with dementia. The findings aim to promote well-being for those with dementia living in long-term care settings

    Cytotoxic T Lymphocyte Therapy for Epstein-Barr Virus+ Hodgkin's Disease

    Get PDF
    Epstein Barr virus (EBV)+ Hodgkin's disease (HD) expresses clearly identified tumor antigens derived from the virus and could, in principle, be a target for adoptive immunotherapy with viral antigen–specific T cells. However, like most tumor-associated antigens in immunocompetent hosts, these potential targets are only weakly immunogenic, consisting primarily of the latent membrane protein (LMP)1 and LMP2 antigens. Moreover, Hodgkin tumors possess a range of tumor evasion strategies. Therefore, the likely value of immunotherapy with EBV-specific cytotoxic effector cells has been questioned. We have now used a combination of gene marking, tetramer, and functional analyses to track the fate and assess the activity of EBV cytotoxic T lymphocyte (CTL) lines administered to 14 patients treated for relapsed EBV+ HD. Gene marking studies showed that infused effector cells could further expand by several logs in vivo, contribute to the memory pool (persisting up to 12 mo), and traffic to tumor sites. Tetramer and functional analyses showed that T cells reactive with the tumor-associated antigen LMP2 were present in the infused lines, expanded in peripheral blood after infusion, and also entered tumor. Viral load decreased, demonstrating the biologic activity of the infused CTLs. Clinically, EBV CTLs were well tolerated, could control type B symptoms (fever, night sweats, and weight loss), and had antitumor activity. After CTL infusion, five patients were in complete remission at up to 40 mo, two of whom had clearly measurable tumor at the time of treatment. One additional patient had a partial response, and five had stable disease. The performance and fate of these human tumor antigen–specific T cells in vivo suggests that they might be of value for the treatment of EBV+ Hodgkin lymphoma

    Human cytomegalovirus latency-associated proteins elicit immune-suppressive IL-10 producing CD4⁺ T cells.

    Get PDF
    Human cytomegalovirus (HCMV) is a widely prevalent human herpesvirus, which, after primary infection, persists in the host for life. In healthy individuals, the virus is well controlled by the HCMV-specific T cell response. A key feature of this persistence, in the face of a normally robust host immune response, is the establishment of viral latency. In contrast to lytic infection, which is characterised by extensive viral gene expression and virus production, long-term latency in cells of the myeloid lineage is characterised by highly restricted expression of viral genes, including UL138 and LUNA. Here we report that both UL138 and LUNA-specific T cells were detectable directly ex vivo in healthy HCMV seropositive subjects and that this response is principally CD4⁺ T cell mediated. These UL138-specific CD4⁺ T cells are able to mediate MHC class II restricted cytotoxicity and, importantly, show IFNγ effector function in the context of both lytic and latent infection. Furthermore, in contrast to CDCD4⁺ T cells specific to antigens expressed solely during lytic infection, both the UL138 and LUNA-specific CD4⁺ T cell responses included CD4⁺ T cells that secreted the immunosuppressive cytokine cIL-10. We also show that cIL-10 expressing CD4⁺ T-cells are directed against latently expressed US28 and UL111A. Taken together, our data show that latency-associated gene products of HCMV generate CD4⁺ T cell responses in vivo, which are able to elicit effector function in response to both lytic and latently infected cells. Importantly and in contrast to CD4⁺ T cell populations, which recognise antigens solely expressed during lytic infection, include a subset of cells that secrete the immunosuppressive cytokine cIL-10. This suggests that HCMV skews the T cell responses to latency-associated antigens to one that is overall suppressive in order to sustain latent carriage in vivo
    corecore