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ABSTRACT
Adenoviruses are lytic DNA viruses that are ubiquitous in human communities. In total, 51 different serotypes
with varying tissue tropisms have been identified. Adenovirus infections, although frequent, are rarely fatal in
immunocompetent individuals who have potent innate and adaptive immunity. But in immunosuppressed
individuals, adenoviruses are a significant cause of morbidity and mortality, with limited treatment options. In
particular, pediatric recipients of allogeneic hematopoietic stem cell transplantation frequently develop infec-
tions early in the posttransplantation period. Because the endogenous recovery of adenovirus-specific T cells
has proven important in controlling infection, we explore the potential of adoptive T-cell immunotherapy as
a therapeutic strategy. We discuss the advantages and limitations of T-cell therapy for the prophylaxis and
treatment of adenovirus infection posttransplantation.
© 2006 American Society for Blood and Marrow Transplantation
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DENOVIRUS BIOLOGY

Adenoviruses are ubiquitous, nonenveloped, lytic
NA viruses. The 51 different human serotypes have

een divided into 6 species (formerly called subgroups),
–F, based on their hemagglutination properties, on-
ogenic potential in rats, and DNA homology (Table 1).
nfection occurs by receptor-mediated endocytosis,
ith most human adenoviruses entering their target

ells through a primary binding interaction between
he fiber protein on the virus capsid and the Cox-
ackie-adenovirus receptor (CAR). The exceptions to
his rule include species B viruses, which interact with
arget cells through CD46 [1,2], and the species D
erotypes 8, 19a, and 37, which bind to sialic acid
esidues rather than to CAR on target cells [3]. Pri-
ary binding is followed by a secondary interaction
ediated by the penton base of the virus and specific

ntegrins on the target cell surface. Once species C
denoviruses have been internalized, they travel to
arly endosomes, from where they escape to the cy-
osol in an active process triggered by the acidity of

his compartment [4]. The adenoviral particles then g

B & M T
igrate to the nucleus using the cellular microtubule
etwork, where they bind to the nuclear pore com-
lexes and translocate the viral genomes to the nucleus
llowing the viral genes to be expressed [5-8]. The in-
racellular trafficking route is determined by the fiber
nob domain and by the nature of the primary attach-
ent receptor [4,9,10]. Using fiber-chimeric vectors,

hayakhmetov et al. [4] demonstrated that Ad5f35
articles gain access to the nucleus by remaining in-
ide late endosomes. During this process, some or all
f the virion proteins gain access to major histocom-
atibility complex (MHC) class I and II processing
athways, so that infected cells become sensitive to
denovirus-specific T-cell recognition even in the ab-
ence of subsequent virus gene expression. Ultimately,
he replication of viral DNA coupled with the produc-
ion of large quantities of adenovirus structural polypep-
ides sets the stage for viral assembly and eventual
scape from the host cell (Figure 1).

The viral genome codes for more than 30 struc-
ural and nonstructural proteins [11]. The non-
tructural proteins can be broadly divided into 2

roups, early and late gene products. Early viral
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ene products mediate viral gene expression and
NA replication, induce cell cycle progression,

lock apoptosis, and antagonize various host antivi-
al measures, whereas late gene products promote
irus assembly and escape. Adenovirus has sophis-
icated mechanisms for evading both the innate and
daptive host immune systems and devotes a large
ortion of its genome to this purpose [12,13]. The
arly protein E1A and the VA (virus-associated)
NAs block responses to interferons (IFNs),
hereas E1B inhibits cellular apoptosis induced by

he stress of the virus infection. The evasion genes
ncoded in the E3 region have various functions,
ncluding tethering MHC I molecules in the endo-
lasmic reticulum and inhibiting the tapasin trans-
orter that processes peptides for presentation on MHC
olecules. Both processes combine to prevent recogni-

ion and lysis of infected cells by cytotoxic T lympho-

able 1. Adenovirus Species and Serotypes

Species Tissue Tropism Serotypes

Gastrointestinal tract 12, 18, 31
Urinary tract, Lung 3, 7, 11, 14, 16, 21,

34, 35, 50
Respiratory tract 1, 2, 5, 6
Eye, gastrointestinal tract 8-10, 13, 15, 17, 19,

20, 22-30, 32, 33,
36-39, 42-49, 51

Respiratory tract 4
Gastrointestinal tract 40, 41

igure 1. Adenovirus life cycle. Infection is a multistage process
resentation, trafficking to the nucleus, viral replication, and finally
nd antigen presentation may occur before the expression of the im
ntry into the nucleus. Thus the infected cell may be sensitive to ly

nfectious virions.

44
ytes (CTLs). In addition, E3 proteins inhibit tumor
ecrosis factor (TNF)-�, Fas, and TRAIL-induced cell
eath by removing their receptors from the infected
ell surface, thus rendering the cells invisible to acti-
ated CTLs and monocytes [12-16].

Both innate and adaptive immune responses are
lerted by the infection process before the expression
f immune evasion genes. The innate immune re-
ponse represents the first line of defense against in-
ading pathogens, which are recognized through a
umber of receptors in intracellular and extracellular
ompartments. The most-studied family of recognition
eceptors is the Toll-like receptor family, although other
echanisms of pathogen recognition exist. Ultimately,

ecognition of pathogen-associated molecular patterns
riggers a series of events, including activation of
F-�B and signal transduction through the mitogen-

ctivated protein kinases. These signals determine the
ype of immune response that will be produced and
esult in the transcription of host chemokines, includ-
ng macrophage inflammatory protein (MIP)-2, IFN-�–
nducible protein 10, MIP-1�, RANTES, and cyto-
ines such as interleukin (IL)-1�, IL-6, IFN-�, and
NF-�. These molecules may have a direct antiviral

esponse and also recruit and activate innate effector
ells, such as natural killer cells, granulocytes, and
onocytes, to sites of infection [17,18]. Subsequently,

he adaptive immune response, mediated by T and B
ells [19-22], is activated.

ng adsorption, internalization, virus uncoating and virion antigen
ell lysis and virus escape. The figure indicates that virus uncoating
evasion genes, which occurs in a temporal fashion after viral DNA
virion-specific T cells before its production and the release of new
involvi
host c
mune
sis by
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ATHOLOGY AND DIAGNOSIS

Many adenovirus serotypes cause morbidity and
ortality in immunosuppressed individuals. The most

ommonly isolated serotypes are 1, 2, and 5 from
pecies C and 34 and 35 from species B [23]. Although
nfection, signified by detection of viral DNA, is not
lways associated with disease, disease is associated
ith significant mortality, and antiviral therapies have

imited efficacy against adenovirus.
Detection and treatment of adenovirus infections

n immunocompromised patients is dependent on a
ensitive means of viral identification, because adeno-
irus may be responsible for a wide range of clinical
yndromes, including pneumonia, gastroenteritis, hepa-
itis, hemorrhagic cystitis, nephritis, encephalitis, and
yocarditis, which are common manifestations of other

ost–bone marrow transplantation complications [23].
ifferent tissues, most commonly stool, urine, blood,

nd nasal washes, must be analyzed and a variety of
ethods have been used to diagnose adenovirus con-

lusively. Until recently, culturing adenovirus was the
ost commonly used method of detection. However,

t may take up to 3 weeks for a cytopathic effect to
evelop, and some serotypes require special cell lines
or isolation. Because early treatment with antiviral
gents has a better outcome, a rapid diagnosis is re-
uired. For this reason, several groups have developed
onventional, nonquantitative polymerase chain reac-
ion (PCR) assays for the detection of adenovirus in
linical samples [24-27].

Viral quantification in clinical samples is standard
ractice for a number of different human viruses using
eal time PCR (RT-PCR) protocols [28-31]. But such
protocol is complicated for adenovirus, because of

he wide range of serotypes and the consequent diffi-
ulty finding conserved sequences for primer/probe
election. Heim et al. [32] addressed this problem by
esigning consensus primer sequences capable of an-
ealing to the hexon protein from all 51 different
erotypes. These authors screened 218 clinical samples
rom multiple sites, including blood, serum, eye
wabs, and feces, by conventional nonquantitative
CR and RT-PCR and found divergent results in 16

amples (15 positive only by RT-PCR and 1 positive
nly by conventional PCR). All of the samples that
ere positive by RT-PCR but negative by conven-

ional PCR had adenovirus DNA concentrations �103

opies/run, indicating a lower sensitivity of the con-
entional PCR. Lion et al. [33] refined this approach
y designing RT-PCR primer/probe combinations
erived from both hexon and the VA RNA region,
ith the ability to distinguish between the 6 different

denovirus species. Identification of the infecting spe-
ies may prove important, particularly if different ad-
novirus species are differentially sensitive to antiviral

gents [34]. These RT-PCR protocols will likely be- c

B & M T
ome standard of care in the hematopoietic stem cell
ransplantation (HSCT) setting.

DENOVIRUS INFECTIONS IN HEMATOPOIETIC STEM
ELL TRANSPLANTATION RECIPIENTS

Various retrospective and prospective studies have
een carried out to assess the incidence of adenovirus
nfection and disease in both adult and pediatric trans-
lantation recipients and also to identify risk factors
or the development of adenovirus infection and dis-
ase posttransplantation [35]. Rates of post–HSCT
nfection varying from 5% to 32% have been reported
33,36-41], but this broad range is likely due to differ-
nt monitoring assays with differing sensitivities used
y the various transplantation centers. Thus there is a
eed for standardization in adenovirus detection
ethods to definitively quantitate the incidence of

denovirus infections posttransplantation. The inci-
ence of disease in patients with detectable adenovirus
n peripheral blood can be as high as 73% [33].

Numerous groups have also attempted to identify
actors that are predictive of adenovirus infection
nd/or disease development [35]. Lion et al. [33] found
hat repeated detection of adenovirus in peripheral
lood using RT-PCR and rising viral load provided
he most reliable means of diagnosing infection and
redicting disease. Runde et al. [41] suggested that
denovirus antibodies in the donor, indicating a recent
xposure, may also be a significant risk factor in the
evelopment of infection. This finding suggests that
denovirus infections post-HSCT are not always reac-
ivations or new infections, but also may be transmit-
ed from the donor; however, this has yet to be for-
ally demonstrated.

The incidence of adenovirus infection is highest in
hildren undergoing allogeneic transplantation and
owest in adults and in children undergoing autolo-
ous transplantation [33,36-40,42]. This difference
ay be linked to the repertoire of the immune re-

ponse to adenovirus in adults and children. Adenovi-
us is first encountered during childhood, during
hich infections are frequently associated with species
viruses, so that the immune response in the early

ears may be quite species-specific. However, over
ime, the breadth of exposure to different species in-
reases, so that immunity broadens, and, in adults,
pecies cross-reactive CTLs that can recognize all
pecies of adenovirus circulate in the periphery more
requently than serotype-specific CTLs [19,20,44,45].
hus the higher incidence of infection early in the
osttransplantation period in children may reflect a

ack of species cross-reactive T cells. If this were the case,
hen risk would be expected to relate to the donor’s
revious exposure; however, the question of whether

hildren receiving sibling stem cells are at greater risk of
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eveloping an adenovirus infection than those receiv-
ng adult stem cells has yet to be addressed. A major
ifference between pediatric and adult transplantation
ecipients relates to the median time of detection
�90 days posttransplantation in adults, compared
ith �30 days posttransplantation in children)

36,39,42].
Once an adenovirus infection has been identified,

reatment options are limited. The antiviral agents
ibavirin and cidofovir can be administered in combi-
ation with tapering immunosuppression [37,40,43].
owever, antivirals have controversial efficacy in vivo

as reviewed in the next section), and in some circum-
tances it is not feasible to taper immunosuppression
ecause of the risk of graft-versus-host disease. Be-
ause resolution of adenovirus infections and disease
as been shown to coincide with the recovery of en-
ogenous T-cell function [46,47], adoptive immuno-
herapy with adenovirus-specific T cells that have been
ctivated and expanded in vitro remains a viable (al-
hough as-yet untested) possibility. In the absence of
herapeutic alternatives, various groups are currently
orking on developing such protocols, as discussed in
ore detail in the Immunotherapy section.

ROPHYLAXIS/THERAPY WITH ANTIVIRAL AGENTS

Adenovirus infections are common after alloge-
eic HSCT, and most patients are able to eliminate
he virus without treatment, as recently demonstrated
n a retrospective study by Walls et al. [48]. These
uthors analyzed 273 samples from 26 pediatric pa-
ients by PCR and found that 7 of 11 children with
lood samples that were positive for adenovirus by
CR cleared the virus without antiviral therapy. How-
ver, it is difficult to predict which patients will spon-
aneously clear an infection and which patients will
uccumb to adenovirus disease. Treatment options are
imited for the latter group. The choice of antiviral
gents is restricted to ribavirin and cidofovir, but to
ate no study has conclusively demonstrated the effi-
acy of these agents as prophylaxis/treatment for ad-
novirus infection and/or disease [49-54].

Ribavirin, a guanosine analog with broad antiviral
ctivity, has been used as a treatment for adenovirus
nfections and disease with variable results. Recently,
ankaster et al. [54] examined 4 pediatric patients who
eveloped adenoviremia post-allogeneic HSCT and
ho received ribavirin at the first sign of dissemina-

ion. After antiviral treatment, viral load was measured
sing real-time PCR analysis. In all 4 cases ribavirin
as not associated with a decrease in viral load, and in

act an increase was noted in 3 of the 4 patients [55].
hus it would seem that ribavirin lacks significant

ntiviral activity in vivo. On the basis of this observa-

ion, treatment was switched from ribavirin to cido- e

46
ovir in 2 of the patients, resulting in stabilization of
n already extremely high viral load. Both patients
ventually succumbed to disease, however.

Cidofovir is a nucleotide analog with potent in vitro
eactivity against several DNA viruses. Its successful use
n treating adenovirus infection and/or disease posttrans-
lantation was reported by Bordigoni et al. [49]. Leruez-
ille et al. [56] evaluated clinical symptoms and virus

oad in response to cidofovir in 8 immunosuppressed
atients with invasive adenovirus disease and found
hat 5 patients had clinical improvement and a con-
urrent reduction in viral load with good outcomes,
ut the remaining 3 did not respond and died, 2 due to
denovirus disease and 1 due to multiple infections and
raft rejection. It should be noted that cidofovir treat-
ent was started later for the 3 patients who died (a
edian of 18 days after the development of symptoms,

ompared with 8 days in those who responded) [56].
hus it appears that cidofovir may be more efficacious

n vivo than ribavirin in treating established adenovi-
us disease. But the time interval between the onset of
ymptoms and administration of treatment may be
rucial, and the nephrotoxicity associated with intra-
enous cidofovir treatment remains a major concern. A
rospective randomized, controlled trial is needed to
onfirm efficacy in vivo, because rapid spontaneous
learance can coincide with immune recovery post-
SCT.

ELLULAR IMMUNE RESPONSES TO ADENOVIRUS

A number of studies have linked the incidence of
denovirus disease in HSCT recipients with the lack of
ecovery of antigen-specific T cells [37,43,46,47,57,58];
owever, to date there are no reports of immunother-
py trials for the prophylaxis and treatment of adeno-
irus infections in immunocompromised patients.
onetheless, as proof of principle, one group has

eported the efficacy of donor leukocyte infusion for
he treatment of disease [59]. Accordingly, a number
f groups have begun to analyze the T-cell immune
esponse to adenovirus, with a view to identifying
ational targets for future clinical trials. Early studies
f human immunity to adenovirus, carried out by
lomenberg et al. [22,60], showed that the adenovirus-

pecific cellular immune response is mainly CD4� me-
iated and appears to be cross-reactive among different
pecies. An adenovirus-reactive CD8� T-cell compo-
ent was also detected in later studies [14]. Subse-
uently, Smith et al. demonstrated CD4� and CD8�
denovirus-specific T cell responses to dendritic cells
nfected with either wild-type Ad5 or Ad5 dl312, an
1A-deleted mutant, which expresses few if any viral
enes [61], implying that at least one of the input
irion proteins was stimulating memory T cells. Regn

t al. [62] developed a CD40–ligand co-culture system
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o infect Epstein-Barr virus (EBV)-transformed B-cell
ines (LCLs) with adenovirus, then stimulated periph-
ral blood mononuclear cells from EBV- and adeno-
irus-seropositive donors weekly with autologous ad-
novirus-positive LCLs. Using this method, they were
uccessful in generating CTL lines specific for both
iruses, and the recognition was mediated by both
D4� and CD8� T cells. Using dendritic cells trans-
uced with recombinant adenoviral vectors encoding
ither cytomegalovirus (CMV) pp65 or EBV EBNA3C,
amel et al. [63] also generated polyclonal CTL lines

hat were bi-virus reactive. However, the response
gainst the adenovirus component was less than that
gainst pp65 or EBNA3C, suggesting either that ad-
novirus is not as immunogenic as EBV and CMV, or
hat the exogenous antigen-processing pathway used
y adenovirus was less potent than the endogenous
athway used by the transgenes. Importantly, adenovi-
us-specific polyclonal T cells, activated by different
ethodologies, were able to recognize and kill target

ells infected with viruses from multiple species
14,19,44,45,61].

More recently, various groups have begun map-
ing T-cell target antigens in adenovirus. When in-
estigating whether the virion proteins hexon, penton,
nd fiber were responsible for stimulating adenovirus-
pecific T cells in vitro, Hamel et al. [63] found that
exon was strongly immunogenic in most donors,
hereas penton and fiber were found to be less im-
unogenic. Hexon is the largest and most abundant

f the structural proteins in the icosahedral adenoviral
apsid. The other two major capsid proteins, penton
ase and fiber, form the penton complex at each virion
ertex. Thus it seems that the T-cell immune response
s polarized to these abundant structural antigens,
hich are readily available for processing and presen-

ation to circulating T cells before the expression of
mmune evasion genes [64]. The fine mapping of
-cell peptide epitopes in adenovirus is also being
one by various groups, and a hexon-specific CD4�
-cell epitope has been described [21,65], whereas our

roup has identified multiple hexon-specific CD8�
-cell epitopes [44]. These studies have provided po-

ential target antigens for immunotherapy, as well as
eptide and tetramer/multimer reagents for immuno-

ogic evaluation of T-cell infusions.

DENOVIRUS CROSS-REACTIVITY

Antibody responses to adenovirus can be broadly
ivided into 2 types: species-specific reactivity and type-
pecific reactivity. Generally, species-specific antibod-
es are nonneutralizing, whereas type-specific responses
re directed against hypervariable regions on the virus
apsid and can effectively neutralize extracellular vi-

us, thus preventing virus spread [66-69]. The main n

B & M T
argets of type-specific neutralizing antibodies are
he adenovirus structural proteins, hexon and fiber
70,71].

T-cell reactivity in humans has also proven to be
ross-reactive, although most of this analysis has been
arried out in bulk CTL lines [21,45,60,61]. More
ecently, these studies have been refined to a clonal
evel; Heemskerk et al. [19] analyzed CD4� clones
rom cross-reactive polyclonal CTL lines activated
sing inactivated Ad5 (species C) as an antigenic stim-
lus. Of 11 T-cell clones tested, 2 reacted only with
ther species C viruses, 4 reacted with species B and C
iruses, and 5 reacted with species A, B, and C viruses
n proliferation assays [19]. It should be noted that
iruses from species D, E, and F were not screened,
nd the antigen and epitope specificity of the clones
as not identified.

Our group has also addressed the question of ad-
novirus cross-reactivity using a panel of CD8� T-
ell clones generated from a cross-reactive polyclonal
ine, reactivated with a replication-defective chimeric
d5f35 vector [20,72,73]. The CD8� T-cell clones
ere reactive against 5 hexon-specific T-cell epitopes

s assessed by cytotoxicity assay. Four of these epitopes,
estricted by HLA-A*1, HLA-A*2, and HLA-B*7, were
rocessed and presented in a species B, C, D, and E
ross-reactive manner, whereas the remaining epitope,
ecognized in the context of HLA-A*24, was specific
or viruses within species C and D. Viruses from
pecies A or F were not tested, but the epitope se-
uences were conserved within these species [44].

The hexon protein can be divided into two parts:
he loops on the outer surface of the molecule, which
re hypervariable, and the base of the protein, which is
ighly conserved because of packing constraints within
he capsid [11,68]. Examination of the location of our
exon-specific T-cell epitopes on the hexon molecule
evealed that all were located in the conserved region
f hexon, irrespective of whether reactive T cells rec-
gnized viruses from 2 species or 4 species. Thus, we
ypothesize that the adenovirus-specific memory T-
ell pool reflects the pattern of previous exposure
74,75]. We predict that after the first exposure, T
ells will be specific for both type-specific and cross-
eactive epitopes; with subsequent infections, cross-
eactive T cells will be expanded preferentially, so that
n adults who have experienced multiple infections
ith various serotypes, cross-reactive epitopes will
ominate. Because the pool of adenovirus serotypes is
tably maintained in human populations and there is a
emporal infection pattern, with most common expo-
ure to species C viruses in childhood followed by
ther serotypes from the other species, species cross-
eactive immunity can be developed and maintained
70,71]. This may have implications for HSCT recip-
ents, because immunity transferred from younger do-

ors may be less broadly cross-reactive and less pro-
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ective than that from older donors. However, this has
et to be addressed in clinical studies and in studies of
denovirus-specific immunity in children.

MMUNOTHERAPY

Adoptive immunotherapy has already proven suc-
essful as prophylaxis and treatment for EBV- and
MV-related infections and disease in HSCT recipi-

nts [76-81]. In vitro expanded CTLs have a number
f advantages over standard therapy, including their

ack of toxicity and ability to persist and protect during
he entire posttransplantation period [77,79], but they
resent both scientific and practical complexities.
irst, the T-cell line must be generated under good
anufacturing practices in a specialized cell culture

acility, which is available in few hospitals. Therefore,
he global usefulness of immunotherapy as an ap-
roach for the prophylaxis/treatment of viral infec-
ions is limited, although stem cell processing facilities
ay be adapted for cell culture. Any CTL expansion

rotocol must use approved reagents and supplies, and
lthough clinical grade products are not required for
hase I/II protocols, they must meet certain manufac-
uring requirements and be approved by federal reg-
latory agencies. Finally, the rules that govern the
eneration, safety testing, and infusion of such lines
re extensive to the point of being prohibitive, and the
ssociated expenses are considerable.

From a scientific standpoint, initiating adoptive
mmunotherapy protocols for adenovirus is compli-
ated, because adenovirus T-cell immunology is less
ell understood and it is unclear which target antigens
ill be protective in vivo. Experience in other systems
as indicated that a successful/efficacious CTL prod-
ct should contain a combination of CD4� and
D8� T cells to promote in vivo persistence [77,82];

herefore, a simple and reliable method of activating
nd expanding adenovirus-specific polyclonal CD4�
nd CD8� CTLs must be developed. Finally, to eval-
ate the efficacy of T-cell infusions, it must be possi-
le to track their function and persistence over time
fter infusion.

Recent advances in our understanding of adeno-
irus immunogenicity, as well as increasing detection
f adenoviremia in immunosuppressed individuals,
ave spurred various groups to develop adenovirus-
doptive immunotherapy protocols that can be per-
ormed under good manufacturing practices and ap-
lied to a clinical setting. Feuchtinger et al. [57] took
dvantage of the IFN-� secretion assay to isolate ad-
novirus-specific T cells from peripheral blood or
rom leukapheresis products. Peripheral blood mono-
uclear cells (0.1–2 � 109) were stimulated with an
denovirus lysate for 16 hours, and then cytokine-

ecreting cells (median, 3.4 � 106) were isolated using s

48
he CliniMACS system. These cells were subsequently
xpanded in vitro using 100 U/mL of IL-2 and irra-
iated allogeneic feeders (5 � 106/mL) until there
ere sufficient cells for infusion purposes. It took a
edian of 18 days to reach 108 total cells, and these
ere tested in various functional assays to confirm the

pecificity of the lines and to assess any residual allo-
eneic activity. The purity at the end of the expansion
hase was 85%, with some nonspecific reactivity re-
aining. Feuchtinger et al. [57] propose using this

ystem in future immunotherapy protocols, because it
s an easy and rapid method for isolating and expand-
ng antigen-specific T cells that may be applicable to
linical-grade applications. However, higher purity
ay be required at the initial isolation step to prevent

he carry-over of nonspecific T cells, and an alterna-
ive source of virus-free antigen may be required as a
timulus.

Our group has adopted a different approach to
denovirus-adoptive immunotherapy. We reasoned
hat because adenovirus structural proteins appear to
e immunogenic in vitro, they may provide sufficient
ntigen stimulation to memory T cells. Adenoviral
ectors are readily available as a purified clinical-grade
roduct because they have been used for many years in
ene therapy studies and as vaccines [83]. We have
roduced a clinical-grade chimeric Ad5f35-null vector
hat, after transduction into activated monocytes, is
ble to reactivate hexon-specific T cells [20,44]. For
he in vitro expansion of the T cells, we used autolo-
ous Ad5f35 null-transduced LCL, which can readily
e produced from each donor, providing an unlimited
ource of APCs (antigen-presenting cells) that can
resent adenovirus proteins [20]. Although LCLs also
resent EBV antigens, they maintain the adenovirus-
pecific T-cell component during the expansion pro-
ess with only minor expansion of residual EBV-spe-
ific T cells that remain in the cultures after the first
timulation with adenovirus-transduced monocytes
20]. Because allogeneic HSCT recipients are at risk
or both adenovirus and EBV, we reasoned that the
nfusion of a bi-virus–specific CTL line specific for
oth viruses would be a bonus. There are some limi-
ations associated with this method, most notably the
se of an LCL for the second and subsequent rounds
f expansion. In this situation the generation of an
CL line, rarely a problem in healthy bone marrow
onors, can take up to 6 weeks, causing a significant
elay in the CTL generation process. Because adeno-
iral infections occur early in the posttransplantation
eriod, CTLs may be most effective when adminis-
ered at this time. Therefore, in the long term, other
ources of APCs, such as B-cell blasts or methods
sing artificial APCs for expansion, may be investi-
ated to speed up the CTL generation process.

A clinical protocol for the infusion of adenovirus-

pecific CTLs into recipients of allogeneic HSCT was
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ubmitted to and approved by the Baylor College of
edicine Institutional Review Board, the Recombi-

ant DNA Advisory Committee, and the US FDA.
atients will be enrolled on this study in the coming
onths, and we anticipate the patient cohort to be

ominated by pediatric patients undergoing allogeneic
ransplantation at Texas Children’s Hospital. Patients
ill receive CTLs regardless of adenovirus status on
nrollment. Although there may be too few patients in
his study to determine antiviral efficacy, we will be
ble to evaluate the patients’ ability to reconstitute
mmune responses to adenovirus using immunologic
ssays. For this reason, we will preferentially enroll
atients with an informative HLA type, that is, for
hich we have identified epitopes. This will enable the
se of multimer and ELISPOT assays to track infused

cells in preinfusion and postinfusion blood samples
nd evaluate their ability to expand, reconstitute im-
unity to adenovirus, and persist in vivo.

Along with immunologic monitoring, extensive
irologic monitoring of patients for the presence of
BV and adenovirus preinfusion and postinfusion will
e performed using RT-PCR analysis of peripheral
lood for EBV and blood, urine, and stool samples for
denovirus. Initially, samples will be assessed for ade-
ovirus positivity using a generic primer–probe com-
ination that detects all adenovirus serotypes. If an

nfection is detected, then the infecting species will be
dentified using the primer–probe combination spe-
ific to each species. This virologic monitoring will be
arried out pretreatment, then weekly for 60 days
ostinfusion, and then in accordance with the stan-
ard of care for each patient.

ERSPECTIVES

In summary, adenovirus infections remain a major
ause of morbidity and mortality, particularly in
SCT recipients. Although significant advances have

een made in our ability to detect infection and even
o identify the infecting species, antiviral therapies are
acking. A number of recent publications have dem-
nstrated a link between the recovery of endogenous
denovirus-specific T cells and protection against in-
ection and disease in vivo. Consequently, protocols
or the infusion of in vitro expanded adenovirus-spe-
ific T cells as prophylaxis and/or treatment for infec-
ion and disease are being developed by a number of
ranslational groups worldwide. This work is being
acilitated by the identification of immunogenic ade-
ovirus antigens, which will provide rational targets
or in vivo studies. In addition, the list of adenovirus-
pecific CD4� and CD8� T cell epitopes is growing,
llowing for the characterization of CTL lines prein-
usion and facilitating follow-up analysis postinfusion.

hus, while waiting for the identification of novel and

B & M T
ontoxic antiviral agents that are effective against ad-
noviruses, adoptive T-cell therapy for adenovirus
ay provide the best treatment option available. Pro-

iding that the immunogenic antigens identified are
rotective, we can anticipate a significant reduction in
he number of patients who succumb to adenovirus
nfections posttransplantation, as has been the case with
doptive immunotherapy for EBV.
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