147 research outputs found

    Evidence for genetic variance in resistance to tuberculosis in Great Britain and Irish Holstein-Friesian populations

    Get PDF
    peer-reviewedBackground: Here, we jointly summarise scientific evidence for genetic variation in resistance to infection with Mycobacterium bovis, the primary agent of bovine tuberculosis (TB), provided by two recent and separate studies of Holstein-Friesian dairy cow populations in Great Britain (GB) and Ireland. Methods: The studies quantified genetic variation within archived data from field and abattoir surveillance control programmes within each country. These data included results from the single intradermal comparative tuberculin test (SICTT), abattoir inspection for TB lesions and laboratory confirmation of disease status. Threshold animal models were used to estimate variance components for responsiveness to the SICTT and abattoir confirmed M. bovis infection. The link functions between the observed 0/1 scale and the liability scale were the complementary log-log in the GB, and logit link function in the Irish population. Results and discussion: The estimated heritability of susceptibility to TB, as judged by responsiveness to the SICTT, was 0.16 (0.012) and 0.14 (0.025) in the GB and Irish populations, respectively. For abattoir or laboratory confirmation of infection, estimates were 0.18 (0.044) and 0.18 (0.041) from the GB and the Irish populations, respectively. Conclusions: Estimates were all significantly different from zero and indicate that exploitable variation exists among GB and Irish Holstein Friesian dairy cows for resistance to TB. Epidemiological analysis suggests that factors such as variation in exposure or imperfect sensitivity and specificity would have resulted in underestimation of the true values

    A randomized controlled trial to assess the clinical and cost effectiveness of a nurse-led Antenatal Asthma Management Service in South Australia (AAMS study)

    Get PDF
    Background: Pregnancy presents a unique situation for the management of asthma as it can alter the course of asthma severity and its treatment, which in turn can affect pregnancy outcomes. Despite awareness of the substantial adverse effects associated with asthma during pregnancy, little has been done to improve its management and reduce associated perinatal morbidity and mortality. The aim of this randomized controlled trial is to evaluate the clinical and cost effectiveness of an Antenatal Asthma Management Service. Methods/design: Design: Multicentre, randomized controlled trial. Inclusion criteria: Women with physician diagnosed asthma, which is not currently in remission, who are less than 20 weeks gestation with a singleton pregnancy and do not have a chronic medical condition. Trial entry and randomization: Eligible women with asthma, stratified by treatment site, disease severity and parity, will be randomized into either the ‘Standard Care Group’ or the ‘Intervention Group’. Study groups: Both groups will be followed prospectively throughout pregnancy. Women in the ‘Standard Care Group’ will receive routine obstetric care reflecting current clinical practice in Australian hospitals. Women in the ‘Intervention Group’ will receive additional care through the nurse-led Antenatal Asthma Management Service, based in the antenatal outpatient clinic. Women will receive asthma education with a full assessment of their asthma at 18, 24, 30 and 36 weeks gestation. Each antenatal visit will include a 60 min session where asthma management skills are assessed including: medication adherence and knowledge, inhaler device technique, recognition of asthma deterioration and possession of a written asthma action plan. Furthermore, subjects will receive education about asthma control and management skills including trigger avoidance and smoking cessation counseling when appropriate. Primary study outcome: Asthma exacerbations during pregnancy. Sample size: A sample size of 378 women will be sufficient to show an absolute reduction in asthma exacerbations during pregnancy of 20% (alpha 0.05 two-tailed, 90% power, 5% loss to follow-up). Discussion: The integration of an asthma education program within the antenatal clinic setting has the significant potential to improve the participation of pregnant women in the self-management of their asthma, reduce asthma exacerbations and improve perinatal health outcomes.Luke E Grzeskowiak, Gustaaf Dekker, Karen Rivers, Kate Roberts-Thomson, Anil Roy, Brian Smith, Jeffery Bowden, Robert Bryce, Michael Davies, Justin Beilby, Anne Wilson, Philippa Middleton, Richard Ruffin, Jonathan Karnon, Vicki L Clifton and for the AAMS study grou

    Elevated risk of stillbirth in males: systematic review and meta-analysis of more than 30 million births

    Get PDF
    Background Stillbirth rates have changed little over the last decade, and a high proportion of cases are unexplained. This meta-analysis examined whether there are inequalities in stillbirth risks according to sex. Methods A systematic review of the literature was conducted, and data were obtained on more than 30 million birth outcomes reported in observational studies. The pooled relative risk of stillbirth was estimated using random-effects models. Results The crude mean rate (stillbirths/1,000 total births) was 6.23 for males and 5.74 for females. The pooled relative risk was 1.10 (95% confidence interval (CI): 1.07-1.13). The attributable fraction in the whole population was 4.2% (95% CI: 3.70-4.63), and the attributable fraction among male fetuses was 7.8% (95% CI: 7.0-8.66). Study populations from countries with known sex-biased sex selection issues had anomalous stillbirth sex ratios and higher overall stillbirth risks than other countries, reflecting increased mortality among females. Conclusions Risk of stillbirth in males is elevated by about 10%. The population-attributable risk is comparable to smoking and equates to approximately 100,000 stillbirths per year globally. The pattern is consistent across countries of varying incomes. Given current difficulties in reducing stillbirth rates, work to understand the causes of excess male risk is warranted. We recommend that stillbirths are routinely recorded by sex. This will also assist in exposing prenatal sex selection as elevated or equal risks of stillbirth in females would be readily apparent and could therefore be used to trigger investigation

    Cardio-metabolic risk in 5-year-old children prenatally exposed to maternal psychosocial stress: the ABCD study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent evidence, both animal and human, suggests that modifiable factors during fetal and infant development predispose for cardiovascular disease in adult life and that they may become possible future targets for prevention. One of these factors is maternal psychosocial stress, but so far, few prospective studies have been able to investigate the longer-term effects of stress in detail, i.e. effects in childhood. Therefore, our general aim is to study whether prenatal maternal psychosocial stress is associated with an adverse cardio-metabolic risk profile in the child at age five.</p> <p>Methods/design</p> <p>Data are available from the Amsterdam Born Children and their Development (ABCD) study, a prospective birth cohort in the Netherlands. Between 2003-2004, 8,266 pregnant women filled out a questionnaire including instruments to determine anxiety (STAI), pregnancy related anxiety (PRAQ), depressive symptoms (CES-D), parenting stress (PDH scale) and work stress (Job Content Questionnaire).</p> <p>Outcome measures in the offspring (age 5-7) are currently collected. These include lipid profile, blood glucose, insulin sensitivity, body composition (body mass index, waist circumference and bioelectrical impedance analysis), autonomic nervous system activity (parasympathetic and sympathetic measures) and blood pressure.</p> <p>Potential mediators are maternal serum cortisol, gestational age and birth weight for gestational age (intrauterine growth restriction). Possible gender differences in programming are also studied.</p> <p>Discussion</p> <p>Main strengths of the proposed study are the longitudinal measurements during three important periods (pregnancy, infancy and childhood), the extensive measurement of maternal psychosocial stress with validated questionnaires and the thorough measurement of the children's cardio-metabolic profile. The availability of several confounding factors will give us the opportunity to quantify the independent contribution of maternal stress during pregnancy to the cardio-metabolic risk profile of her offspring. Moreover, the mediating role of maternal cortisol, intrauterine growth, gestational age and potential gender differences can be explored extensively. If prenatal psychosocial stress is indeed found to be associated with the offspring's cardio-metabolic risk, these results support the statement that primary prevention of cardiovascular disease may start even before birth by reducing maternal stress during pregnancy.</p

    Sex- and Diet-Specific Changes of Imprinted Gene Expression and DNA Methylation in Mouse Placenta under a High-Fat Diet

    Get PDF
    Changes in imprinted gene dosage in the placenta may compromise the prenatal control of nutritional resources. Indeed monoallelic behaviour and sensitivity to changes in regional epigenetic state render imprinted genes both vulnerable and adaptable

    Sex Differences in the Brain: A Whole Body Perspective

    Get PDF
    Most writing on sexual differentiation of the mammalian brain (including our own) considers just two organs: the gonads and the brain. This perspective, which leaves out all other body parts, misleads us in several ways. First, there is accumulating evidence that all organs are sexually differentiated, and that sex differences in peripheral organs affect the brain. We demonstrate this by reviewing examples involving sex differences in muscles, adipose tissue, the liver, immune system, gut, kidneys, bladder, and placenta that affect the nervous system and behavior. The second consequence of ignoring other organs when considering neural sex differences is that we are likely to miss the fact that some brain sex differences develop to compensate for differences in the internal environment (i.e., because male and female brains operate in different bodies, sex differences are required to make output/function more similar in the two sexes). We also consider evidence that sex differences in sensory systems cause male and female brains to perceive different information about the world; the two sexes are also perceived by the world differently and therefore exposed to differences in experience via treatment by others. Although the topic of sex differences in the brain is often seen as much more emotionally charged than studies of sex differences in other organs, the dichotomy is largely false. By putting the brain firmly back in the body, sex differences in the brain are predictable and can be more completely understood

    The placenta: phenotypic and epigenetic modifications induced by Assisted Reproductive Technologies throughout pregnancy

    Get PDF
    corecore