29 research outputs found

    Airborne electromagnetic imaging of discontinuous permafrost

    Get PDF
    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to stream flow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ~1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ~4 million years and the configuration of permafrost to depths of ~100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface – groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past 1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments

    Mass Spectrometric Sampling of a Liquid Surface by Nanoliter Droplet Generation from Bursting Bubbles and Focused Acoustic Pulses: Application to Studies of Interfacial Chemistry

    Full text link

    Editor’s message

    No full text

    Editors’ preface

    No full text

    Development of perennial thaw zones in boreal hillslopes enhances potential mobilization of permafrost carbon

    No full text
    Permafrost thaw alters subsurface flow in boreal regions that in turn influences the magnitude, seasonality, and chemical composition of streamflow. Prediction of these changes is challenged by incomplete knowledge of timing, flowpath depth, and amount of groundwater discharge to streams in response to thaw. One important phenomenon that may affect flow and transport through boreal hillslopes is development of lateral perennial thaw zones (PTZs), the existence of which is here supported by geophysical observations and cryohydrogeologic modeling. Model results link thaw to enhanced and seasonally-extended baseflow, which have implications for mobilization of soluble constituents. Results demonstrate the sensitivity of PTZ development to organic layer thickness and near-surface factors that mediate heat exchange at the atmosphere/ground-surface interface. Study findings suggest that PTZs serve as a detectable precursor to accelerated permafrost degradation. This study provides important contextual insight on a fundamental thermo-hydrologic process that can enhance terrestrial-to-aquatic transfer of permafrost carbon, nitrogen, and mercury previously sequestered in thawing watersheds

    Simulating water and heat transport with freezing and cryosuction in unsaturated soil: Comparing an empirical, semi-empirical and physically-based approach

    No full text
    Freezing of unsaturated soil is an important process that influences runoff and infiltration in cold-climate regions. We used a simple numerical model to simulate water and heat transport with phase change in unsaturated soil via three different approaches: empirical, semi-empirical and physically based. We compared the performance and parameterization of each approach through testing on three experimental datasets. All approaches reproduced the observed unsaturated freezing process satisfactorily. The empirical cryosuction equation used in this study managed to capture observed cryosuction with a fixed empirical parameter value. The semi-empirical version therefore does not require calibration of a specific frozen soil related parameter. In view of simplicity, small computational demand and accurate performance, all three approaches are suitable for implementation in land-use schemes, catchment scale hydrological models, or multi-dimensional thermo-hydrological models

    Effect of Flow‐Direction‐Dependent Dispersivity on Seawater Intrusion in Coastal Aquifers

    No full text
    International audienceAbstract Flow‐direction‐dependent (FDD) dispersivity in coastal aquifers (CAs) may strongly affect the inland extend of seawater intrusion (SWI) and the accompanying vertical salinity distribution. FDD dispersivity may predict greater inland intrusion of the saltwater wedge, but less vertical spreading of salinity than does the classical flow‐direction‐independent (FDI) dispersivity, the standard currently employed in most numerical CA models. Dispersion processes play a key role in the SWI process and directly affect CA pumped water quality. Constant FDI dispersivities may be inappropriate in representing mixing processes due to large differences between depth and horizontal salinity transport scales, and due to typical structured heterogeneities in aquifer fabrics. Comparison of FDI and FDD model forecasts for the classical Henry problem (HP) steady‐state SWI, based on a new HP semianalytical solution with FDD and on a numerical FDI model modified to additionally represent FDD, highlights the theoretical types of differences implied by these alternative dispersivity assumptions and exactly how each parameter affects the solution. Large differences between FDI and FDD dispersivity forecasts of time‐dependent SWI in large scale heterogeneous aquifers occur in a typical CA (Akkar CA, Lebanon). The FDD model forecasts that future salinities in pumping wells will exceed the potable water limit, whereas the FDI model greatly underestimates the historic inland intrusion of the saltwater wedge and forecasts no impact on future Akkar CA potable water supply. These results indicate the importance of employing the appropriate dispersion process representation when creating model‐based SWI forecasts, especially for developing effective CA management strategies

    MANTRA-O18: An Extended Version of SUTRA Modified to Simulate Salt and δ

    No full text
    Sea level rise and the increasing landward intrusion of storm surges pose the threat of replacement of salinity-intolerant vegetation of important coastal habitats by salinity-tolerant vegetation. Therefore, a means is needed to better understand the processes that influence this vegetation shift and to aid in the management of coastal resources. For this purpose, a hydrology–salinity–vegetation model known as MANTRA was developed by coupling a spatially explicit model (MANHAM) for simulation of vegetation community dynamics along coastal salinity gradients with SUTRA, a USGS groundwater flow and transport model. MANTRA has been used to project possible future changes in Coot Bay Hammock in southern Florida under conditions of gradually rising sea level and storm surges. The simulation study concluded that feasibility exists of a regime shift from hardwood hammocks to mangroves subject to a few conditions, namely severe damage to the existing hammock after a storm surge and a sufficiently persistent high salinity condition and high input of mangrove seedlings. Early detection of salinity stress in vegetation may facilitate sustainable conservation measures being applied. It has been shown that the δ18O value of water in the xylem of trees can be used as a surrogate for salinity in the rooting zone of plants, which is difficult to measure directly. Hence, the model MANTRA is revised into MANTRA-O18 by including the δ18O of the tree xylem dynamics. A simulation study by MANTRA-O18 shows that effects of increasing salinization can be detected many years before the salinity-intolerant trees are threatened with replacement
    corecore