355 research outputs found

    Universal D-modules and stacks of \'etale germs of n-dimensional varieties

    Full text link
    We introduce stacks classifying \'etale germs of pointed n-dimensional varieties. We show that quasi-coherent sheaves on these stacks are universal D- and O-modules. We state and prove a relative version of Artin's approximation theorem, and as a consequence identify our stacks with classifying stacks of automorphism groups of the n-dimensional formal disc. We introduce the notion of convergent universal modules, and study them in terms of these stacks and the representation theory of the automorphism groups.Comment: 61 pages. Version 1 had a gap: Artin's approximation theorem was misstated and the incorrect version was used. This gap has been fixed, using new material in sections 2 and 5. Section 8 has been added, to treat the dg-categorical version of the results. The paper has been restructured and the introduction has been expanded. Version 3: minor change

    Aspects of Bunuba grammar and semantics

    Get PDF
    This thesis is a study of Bunuba, a language spoken around the township of Fitzroy Crossing in the West Kimberley region of Western Australia. Chapter 1 introduces Bunuba by discussing the location and sociolinguistic information and providing the reader with background to the language and its speakers. In this Chapter details of different speech registers and dialects are introduced and a brief review is undertaken of the previous research which has been carried out on the language and its speakers. Also included is a discussion of some contemporary uses of Bunuba and a description of my fieldwork methodology. This Chapter also sets this work apart from previous research on Bunuba, particularly that undertaken by Alan Rumsey. The differences between his work and the work presented in this thesis are outlined in Chapter 1. Chapter 2 describes the structure of the language detailing phonology and morphophonological procedures, word classes and nominal morphology. Chapter 3 discusses the formal structure of Bunuba verbal morphology

    Nature of and Lessons Learned from Lunar Ice Cube and the First Deep Space Cubesat 'Cluster'

    Get PDF
    Cubesats operating in deep space face challenges Earth-orbiting cubesats do not. 15 deep space cubesat 'prototypes' will be launched over the next two years including the two MarCO cubesats, the 2018 demonstration of dual communication system at Mars, and the 13 diverse cubesats being deployed from the SLS EM1 mission within the next two years. Three of the EM1 cubesat missions, including the first deep space cubesat 'cluster', will be lunar orbiters with remote sensing instruments for lunar surface/regolith measurements. These include: Lunar Ice Cube, with its 1-4 micron broadband IR spectrometer, BIRCHES, to determine volatile distribution as a function of time of day; Lunar Flashlight, to confirm the presence of surface ice at the lunar poles, utilizing an active source (laser), and looking for absorption features in the returning signal; and LunaH-Map to characterize ice at or below the surface at the poles with a compact neutron spectrometer. In addition, the BIRCHES instrument on Lunar Ice Cube will provide the first demonstration of a microcryocooler (AIM/IRIS) in deep space. Although not originally required to do so, all will be delivering science data to the Planetary Data System, the first formal archiving effort for cubesats. 4 of the 20 recently NASA-sponsored (PSDS3) study groups for deep space cubesat/smallsat mission concepts were lunar mission concepts, most involving 12U cubesats. NASA SIMPLEX 2/SALMON 3 AO will create ongoing opportunities for low-cost missions as 'rides' on government space program or private sector vehicles as these become available

    An Unusual Transmission Spectrum for the Sub-Saturn KELT-11b Suggestive of a Sub-Solar Water Abundance

    Full text link
    We present an optical-to-infrared transmission spectrum of the inflated sub-Saturn KELT-11b measured with the Transiting Exoplanet Survey Satellite (TESS), the Hubble Space Telescope (HST) Wide Field Camera 3 G141 spectroscopic grism, and the Spitzer Space Telescope (Spitzer) at 3.6 μ\mum, in addition to a Spitzer 4.5 μ\mum secondary eclipse. The precise HST transmission spectrum notably reveals a low-amplitude water feature with an unusual shape. Based on free retrieval analyses with varying molecular abundances, we find strong evidence for water absorption. Depending on model assumptions, we also find tentative evidence for other absorbers (HCN, TiO, and AlO). The retrieved water abundance is generally 0.1×\lesssim 0.1\times solar (0.001--0.7×\times solar over a range of model assumptions), several orders of magnitude lower than expected from planet formation models based on the solar system metallicity trend. We also consider chemical equilibrium and self-consistent 1D radiative-convective equilibrium model fits and find they too prefer low metallicities ([M/H]2[M/H] \lesssim -2, consistent with the free retrieval results). However, all the retrievals should be interpreted with some caution since they either require additional absorbers that are far out of chemical equilibrium to explain the shape of the spectrum or are simply poor fits to the data. Finally, we find the Spitzer secondary eclipse is indicative of full heat redistribution from KELT-11b's dayside to nightside, assuming a clear dayside. These potentially unusual results for KELT-11b's composition are suggestive of new challenges on the horizon for atmosphere and formation models in the face of increasingly precise measurements of exoplanet spectra.Comment: Accepted to The Astronomical Journal. 31 pages, 20 figures, 7 table

    Hypergraph models of biological networks to identify genes critical to pathogenic viral response

    Get PDF
    Background: Representing biological networks as graphs is a powerful approach to reveal underlying patterns, signatures, and critical components from high-throughput biomolecular data. However, graphs do not natively capture the multi-way relationships present among genes and proteins in biological systems. Hypergraphs are generalizations of graphs that naturally model multi-way relationships and have shown promise in modeling systems such as protein complexes and metabolic reactions. In this paper we seek to understand how hypergraphs can more faithfully identify, and potentially predict, important genes based on complex relationships inferred from genomic expression data sets. Results: We compiled a novel data set of transcriptional host response to pathogenic viral infections and formulated relationships between genes as a hypergraph where hyperedges represent significantly perturbed genes, and vertices represent individual biological samples with specific experimental conditions. We find that hypergraph betweenness centrality is a superior method for identification of genes important to viral response when compared with graph centrality. Conclusions: Our results demonstrate the utility of using hypergraphs to represent complex biological systems and highlight central important responses in common to a variety of highly pathogenic viruses

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages
    corecore