66 research outputs found

    Atomic force microscopy investigations on pits and debris related to fretting-corrosion between 316L SS and PMMA

    Get PDF
    International audienceIn the case of hip prostheses, debris generation, due to the fretting-corrosion phenomenon between the femoral stem and the bone cement is one of the most significant causes of reintervention. In this study we use atomic force microscopy (AFM) to analyze PMMA particles and pitting corrosion on 316L SS as a function of chlorides and albumin concentration. Without albumin, the number of pits increases with the chlorides concentration. Contrary to the protective effect of albumin on global corrosive wear, albumin tends to increase the number of pits. The number of ejected particles highly depends on electrochemical conditions and the in vivo conditions, Open Circuit Potential, seem to lead to a small number of particles. This work has also explored atomic force microscopy as a "new" characterization technique for wear debris and demonstrates that 80% of particles have a size inferior to 100 nm, which is the 'critical size' for tissues response

    Extraction and physicochemical characterization of chitin from Cicadaorni sloughs of the south-eastern French Mediterranean basin

    Get PDF
    Chitin is a structural polysaccharide of the cell walls of fungi and exoskeletons of insects and crustaceans. In this study, chitin was extracted, for the first time in our knowledge, from the Cicada orni sloughs of the south-eastern French Mediterranean basin by treatment with 1 M HCl for demineralization, 1 M NaOH for deproteinization, and 1% NaClO for decolorization. The different steps of extraction were investigated by Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), and Scanning Electron Microscopy (SEM). Results demonstrated that the extraction process was efficiently performed and that Cicada orni sloughs of the south-eastern French Mediterranean basin have a high content of chitin (42.8%) in the α-form with a high degree of acetylation of 96% ± 3.4%. These results make Cicada orni of the south-eastern French Mediterranean basin a new and promising source of chitin. Furthermore, we showed that each step of the extraction present specific characteristics (for example FTIR and XRD spectra and, consequently, distinct absorbance peaks and values of crystallinity as well as defined values of maximum degradation temperatures identifiable by TGA analysis) that could be used to verify the effectiveness of the treatments, and could be favorably compared with other natural chitin sources.publishe

    Development of novel chitosan / guar gum inks for extrusion-based 3D bioprinting: process, printability and properties

    Get PDF
    The major limitation of 3D bioprinting is the availability of inks. In order to develop new ink formulations, both their rheological behavior to obtain the best printability and the target bio-printed objects conformities must be studied. In this paper, for the first time in our knowledge, the preparation and the characterization of novel ink formulations based on two natural biocompatible polysaccharides, chitosan (CH) and guar gum (GG), are presented. Five ink formulations containing different proportions of CH and GG were prepared and characterized in terms of rheological properties and solvent evaporation. Their printability was assessed (by varying the nozzle diameter, pressure and speed) using an extrusion-based 3D bioprinting process performed directly in air at 37 °C. Results showed that the incorporation of GG improved both the printability of the pure chitosan ink by increasing the viscosity of the solution and the shape fidelity by accelerating the solvent evaporation. We showed that the ink containing 15% (w/w) of GG and 85% (w/w) of CH had the best printability. This formulation was therefore used for the preparation of membranes that were characterized by infrared spectroscopy (FTIR) and X-Ray Diffraction (XRD) before and after gelation as well as for their mechanical properties (Young modulus, strength and strain at break). The optimal process printing parameters were determined to be: 27 G micronozzle, extrusion pressure below 2 bars and robot head speed between 20 and 25 mm/s. This novel ink formulation is a guideline for developing 2D scaffolds (such as auto-supported membranes) or 3D scaffolds for biomedical applications.publishe

    Multilayered membranes with tuned well arrays to be used as regenerative patches

    Get PDF
    Membranes have been explored as patches in tissue repair and regeneration, most of them presenting a flat geometry or a patterned texture at the nano/micrometer scale. Herein, a new concept of a flexible membrane featuring well arrays forming pore-like environments to accommodate cell culture is proposed. The processing of such membranes using polysaccharides is based on the production of multilayers using the layer-by-layer methodology over a patterned PDMS substrate. The detached multilayered membrane exhibits a layer of open pores at one side and a total thickness of 38±2.2µm. The photolithography technology used to produce the molds allows obtaining wells on the final membranes with a tuned shape and micro-scale precision. The influence of post-processing procedures over chitosan/alginate films with 100 double layers, including crosslinking with genipin or fibronectin immobilization, on the adhesion and proliferation of human osteoblast-like cells is also investigated. The results suggest that the presence of patterned wells affects positively cell adhesion, morphology and proliferation. In particular, it is seen that cells colonized preferentially the well regions. The geometrical features with micro to sub-millimeter patterned wells, together with the nano-scale organization of the polymeric components along the thickness of the film will allow to engineer highly versatile multilayered membranes exhibiting a pore-like microstructure in just one of the sides, that could be adaptable in the regeneration of multiple tissues

    Hydroxyapatite-TiO2-SiO2-Coated 316L Stainless Steel for Biomedical Application

    Get PDF
    This study investigated the effectiveness of titania (TiO2) as a reinforcing phase in the hydroxyapatite (HAP) coating and silica (SiO2) single-layer as a bond coat between the TiO2-reinforced hydroxyapatite (TiO2/HAP) top layer and 316L stainless steel (316L SS) substrate on the corrosion resistance and mechanical properties of the underlying 316L SS metallic implant. Single-layer of SiO2 film was first deposited on 316L SS substrate and studied separately. Water contact angle measurements, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectrophotometer analysis were used to evaluate the hydroxyl group reactivity at the SiO2 outer surface. The microstructural and morphological results showed that the reinforcement of HAP coating with TiO2 and SiO2 reduced the crystallite size and the roughness surface. Indeed, the deposition of 50 vol. % TiO2-reinforced hydroxyapatite layer enhanced the hardness and the elastic modulus of the HAP coating, the introduction of SiO2 inner-layer on the surface of the 316L SS allowed the improvement of the bonding strength and the corrosion resistance as confirmed by scratch studies, nanoindentation and cyclic voltammetry tests

    Comportement mécanique des films minces sur substrats, sous contrainte de compression

    No full text
    POITIERS-BU Sciences (861942102) / SudocSudocFranceF

    Atomic force microscopy investigation of buckling patterns of nickel thin films on polycarbonate substrates

    No full text
    The evolution of buckling patterns of nickel thin films have been studied in situ by atomic force microscopy during cyclic tests composed of uniaxial compression followed by release of the external applied stress. After the first strain cycling, buckling structures evolve from straight-sided wrinkles to varicose patterns characterized by a debuckling of some parts of the film. Further cycling tests reveal that rebonding of the film on its substrate does not occur once decohesion has taken place.Anglai
    • …
    corecore