27 research outputs found

    Spatiotemporal Variations of Dryland Vegetation Phenology Revealed by Satellite-Observed Fluorescence and Greenness across the North Australian Tropical Transect

    Get PDF
    Accurate characterization of spatial patterns and temporal variations in dryland vegetation is of great importance for improving our understanding of terrestrial ecosystem functioning under changing climates. Here, we explored the spatiotemporal variability of dryland vegetation phenology using satellite-observed Solar-Induced chlorophyll Fluorescence (SIF) and the Enhanced Vegetation Index (EVI) along the North Australian Tropical Transect (NATT). Substantial impacts of extreme drought and intense wetness on the phenology and productivity of dryland vegetation are observed by both SIF and EVI, especially in the arid/semiarid interior of Australia without detectable seasonality in the dry year of 2018–2019. The greenness-based vegetation index (EVI) can more accurately capture the seasonal and interannual variation in vegetation production than SIF (EVI r2: 0.47~0.86, SIF r2: 0.47~0.78). However, during the brown-down periods, the rate of decline in EVI is evidently slower than that in SIF and in situ measurement of gross primary productivity (GPP), due partially to the advanced seasonality of absorbed photosynthetically active radiation. Over 70% of the variability of EVI (except for Hummock grasslands) and 40% of the variability of SIF (except for shrublands) can be explained by the water-related drivers (rainfall and soil moisture). By contrast, air temperature contributed to 25~40% of the variability of the effective fluorescence yield (SIFyield) across all biomes. In spite of high retrieval noises and variable accuracy in phenological metrics (MAE: 8~60 days), spaceborne SIF observations, offsetting the drawbacks of greenness-based phenology products with a potentially lagged end of the season, have the promising capability of mapping and characterizing the spatiotemporal dynamics of dryland vegetation phenology

    Detection of vegetation drying signals using diurnal variation of land surface temperature: Application to the 2018 East Asia heatwave

    Get PDF
    Satellite-based vegetation monitoring provides important insights regarding spatiotemporal variations in vegetation growth from a regional to continental scale. Most current vegetation monitoring methodologies rely on spectral vegetation indices (VIs) observed by polar-orbiting satellites, which provide one or a few observations per day. This study proposes a new methodology based on diurnal changes in land surface temperatures (LSTs) using Japan's geostationary satellite, Himawari-8/Advanced Himawari Imager (AHI). AHI thermal infrared observation provides LSTs at 10-min frequencies and ∌ 2 km spatial resolution. The DTC parameters that summarize the diurnal cycle waveform were obtained by fitting a diurnal temperature cycle (DTC) model to the time-series LST information for each day. To clarify the applicability of DTC parameters in detecting vegetation drying under humid climates, DTC parameters from in situ LSTs observed at vegetation sites, as well as those from Himawari-8 LSTs, were evaluated for East Asia. Utilizing the record-breaking heat wave that occurred in East Asia in 2018 as a case study, the anomalies of DTC parameters from the Himawari-8 LSTs were compared with the drying signals indicated by VIs, latent heat fluxes (LE), and surface soil moisture (SM). The results of site-based and satellite-based analyses revealed that DTR (diurnal temperature range) correlates with the evaporative fraction (EF) and SM, whereas Tmax (daily maximum LST) correlates with LE and VIs. Regarding other temperature-related parameters, T0 (LST around sunrise), Ta (temperature rise during daytime), and ÎŽT (temperature fall during nighttime) are unstable in quantification by DTC model. Moreover, time-related parameters, such as tm (time reaching Tmax), are more sensitive to topographic slope and geometric conditions than surface thermal properties at humid sites in East Asia, although they correlate with EF and SM at a semi-arid site in Australia. Additionally, the spatial distribution of the DTR anomaly during the 2018 heat wave corresponds with the drying signals indicated as negative SM anomalies. Regions with large positive anomalies in Tmax and DTR correspond to area with visible damage to vegetation, as indicated by negative VI anomalies. Hence, combined Tmax and DTR potentially detects vegetation drying indetectable by VIs, thereby providing earlier and more detailed vegetation monitoring in both humid and semi-arid climates

    A multiple-trait analysis of ecohydrological acclimatisation in a dryland phreatophytic shrub

    Get PDF
    Water is the main limiting factor for groundwater-dependent ecosystems (GDEs) in drylands. Predicted climate change (precipitation reductions and temperature increases) and anthropogenic activities such as groundwater drawdown jeopardise the functioning of these ecosystems, presenting new challenges for their management. We developed a trait-based analysis to examine the spatiotemporal variability in the ecophysiology of Ziziphus lotus, a long-lived phreatophyte that dominates one of the few terrestrial GDEs of semiarid regions in Europe. We assessed morpho-functional traits and stem water potential along a naturally occurring gradient of depth-to-groundwater (DTGW, 2–25 m) in a coastal aquifer, and throughout the species-growing season. Increasing DTGW and salinity negatively affected photosynthetic and transpiration rates, increasing plant water stress (lower predawn and midday water potential), and positively affected Huber value (sapwood cross-sectional area per leaf area), reducing leaf area and likely, plant hydraulic demand. However, the species showed greater salt-tolerance at shallow depths. Despite groundwater characteristics, higher atmospheric evaporative demand in the study area, which occurred in summer, fostered higher transpiration rates and water stress, and promoted carbon assimilation and water loss more intensively at shallow water tables. This multiple-trait analysis allowed us to identify plant ecophysiological thresholds related to the increase in salinity, but mostly in DTGW (13 m), and in the evaporative demand during the growing season. These findings highlight the existence of tipping points in the functioning of a long-lived phreatophyte in drylands and can contribute to the sustainable management of GDEs in southern Europe, paving the way for further studies on phreatophytic species

    Assessing the impact of extreme droughts on dryland vegetation by multi-satellite solar-induced chlorophyll fluorescence

    Get PDF
    Satellite-estimated solar-induced chlorophyll fluorescence (SIF) is proven to be an effective indicator for dynamic drought monitoring, while the capability of SIF to assess the variability of dryland vegetation under water and heat stress remains challenging. This study presents an analysis of the responses of dryland vegetation to the worst extreme drought over the past two decades in Australia, using multi-source spaceborne SIF derived from the Global Ozone Monitoring Experiment-2 (GOME-2) and TROPOspheric Monitoring Instrument (TROPOMI). Vegetation functioning was substantially constrained by this extreme event, especially in the interior of Australia, in which there was hardly seasonal growth detected by neither satellite-based observations nor tower-based flux measurements. At a 16-day interval, both SIF and enhanced vegetation index (EVI) can timely capture the reduction at the onset of drought over dryland ecosystems. The results demonstrate that satellite-observed SIF has the potential for characterizing and monitoring the spatiotemporal dynamics of drought over water-limited ecosystems, despite coarse spatial resolution coupled with high-retrieval noise as compared with EVI. Furthermore, our study highlights that SIF retrieved from TROPOMI featuring substantially enhanced spatiotemporal resolution has the promising capability for accurately tracking the drought-induced variation of heterogeneous dryland vegetation

    The role of aerodynamic resistance in thermal remote sensing-based evapotranspiration models

    Get PDF
    Aerodynamic resistance (hereafter ra) is a preeminent variable in evapotranspiration (ET) modelling. The accurate quantification of ra plays a pivotal role in determining the performance and consistency of thermal remote sensing-based surface energy balance (SEB) models for estimating ET at local to regional scales. Atmospheric stability links ra with land surface temperature (LST) and the representation of their interactions in the SEB models determines the accuracy of ET estimates. The present study investigates the influence of ra and its relation to LST uncertainties on the performance of three structurally different SEB models. It used data from nine Australian OzFlux eddy covariance sites of contrasting aridity in conjunction with MODIS Terra and Aqua LST and leaf area index (LAI) products. Simulations of the sensible heat flux (H) and the latent heat flux (LE, the energy equivalent of ET in W/m2) from the SPARSE (Soil Plant Atmosphere and Remote Sensing Evapotranspiration), SEBS (Surface Energy Balance System) and STIC (Surface Temperature Initiated Closure) models forced with MODIS LST, LAI, and in-situ meteorological datasets were evaluated against flux observations in water-limited (arid and semi-arid) and energy-limited (mesic) ecosystems from 2011 to 2019. Our results revealed an overestimation tendency of instantaneous LE by all three models in the water-limited shrubland, woodland and grassland ecosystems by up to 50% on average, which was caused by an underestimation of H. Overestimation of LE was associated with discrepancies in ra retrievals under conditions of high atmospheric instability, during which uncertainties in LST (expressed as the difference between MODIS LST and in-situ LST) apparently played a minor role. On the other hand, a positive difference in LST coincided with low ra (high wind speeds) and caused a slight underestimation of LE at the water-limited sites. The impact of ra on the LE residual error was found to be of the same magnitude as the influence of LST uncertainties in the semi-arid ecosystems as indicated by variable importance in projection (VIP) coefficients from partial least squares regression above unity. In contrast, our results for the mesic forest ecosystems indicated minor dependency on ra for modelling LE (VIP \u3c 0.4), which was due to a higher roughness length and lower LST resulting in the dominance of mechanically generated turbulence, thereby diminishing the importance of buoyancy production for the determination of ra

    Environment-sensitivity functions for gross primary productivity in light use efficiency models

    Get PDF
    The sensitivity of photosynthesis to environmental changes is essential for understanding carbon cycle responses to global climate change and for the development of modeling approaches that explains its spatial and temporal variability. We collected a large variety of published sensitivity functions of gross primary productivity (GPP) to different forcing variables to assess the response of GPP to environmental factors. These include the responses of GPP to temperature; vapor pressure deficit, some of which include the response to atmospheric CO2 concentrations; soil water availability (W); light intensity; and cloudiness. These functions were combined in a full factorial light use efficiency (LUE) model structure, leading to a collection of 5600 distinct LUE models. Each model was optimized against daily GPP and evapotranspiration fluxes from 196 FLUXNET sites and ranked across sites based on a bootstrap approach. The GPP sensitivity to each environmental factor, including CO2 fertilization, was shown to be significant, and that none of the previously published model structures performed as well as the best model selected. From daily and weekly to monthly scales, the best model's median Nash-Sutcliffe model efficiency across sites was 0.73, 0.79 and 0.82, respectively, but poorer at annual scales (0.23), emphasizing the common limitation of current models in describing the interannual variability of GPP. Although the best global model did not match the local best model at each site, the selection was robust across ecosystem types. The contribution of light saturation and cloudiness to GPP was observed across all biomes (from 23% to 43%). Temperature and W dominates GPP and LUE but responses of GPP to temperature and W are lagged in cold and arid ecosystems, respectively. The findings of this study provide a foundation towards more robust LUE-based estimates of global GPP and may provide a benchmark for other empirical GPP products.publishersversionpublishe

    Insights Into the Aerodynamic Versus Radiometric Surface Temperature Debate in Thermal-Based Evaporation Modeling

    Get PDF
    Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State-of-the-art one-source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non-parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio-temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research

    Insights into the aerodynamic versus radiometric surface temperature debate in thermal-based evaporation modeling

    Get PDF
    Global evaporation monitoring from Earth observation thermal infrared satellite missions is historically challenged due to the unavailability of any direct measurements of aerodynamic temperature. State-of-the-art one-source evaporation models use remotely sensed radiometric surface temperature as a substitute for the aerodynamic temperature and apply empirical corrections to accommodate for their inequality. This introduces substantial uncertainty in operational drought mapping over complex landscapes. By employing a non-parametric model, we show that evaporation can be directly retrieved from thermal satellite data without the need of any empirical correction. Independent evaluation of evaporation in a broad spectrum of biome and aridity yielded statistically significant results when compared with eddy covariance observations. While our simplified model provides a new perspective to advance spatio-temporal evaporation mapping from any thermal remote sensing mission, the direct retrieval of aerodynamic temperature also generates the highly required insight on the critical role of biophysical interactions in global evaporation research

    Examining the role of environmental memory in the predictability of carbon and water fluxes across Australian ecosystems

    Get PDF
    The vegetation's response to climate change is a significant source of uncertainty in future terrestrial biosphere model projections. Constraining climate-carbon cycle feedbacks requires improving our understanding of both the immediate and long-term plant physiological responses to climate. In particular, the timescales and strength of memory effects arising from both extreme events (i.e. droughts and heatwaves) and structural lags in the systems (such as delays between rainfall and peak plant water content or between a precipitation deficit and down-regulation of productivity) have largely been overlooked in the development of terrestrial biosphere models. This is despite the knowledge that plant responses to climatic drivers occur across multiple timescales (seconds to decades), with the impact of climate extremes resonating for many years. Using data from 12 eddy covariance sites, covering two rainfall gradients (256 to 1491 mm yr-1) in Australia, in combination with a hierarchical Bayesian model, we characterised the timescales and magnitude of influence of antecedent drivers on daily net ecosystem exchange (NEE) and latent heat flux (λE). By focussing our analysis on a single continent (and predominately on a single genus), we reduced the degrees of variation between each site, providing a novel chance to explore the unique characteristics that might drive the importance of memory. Model fit varied considerably across sites when modelling NEE, with R2 values of between 0.30 and 0.83. λE was considerably more predictable across sites, with R2 values ranging from 0.56 to 0.93. When considered at a continental scale, both fluxes were more predictable when memory effects (expressed as lagged climate predictors) were included in the model. These memory effects accounted for an average of 17 % of the NEE predictability and 15 % for λE. Consistent with prior studies, the importance of environmental memory in predicting fluxes increased as site water availability declined (ρ-0.73, p<0.01 for NEE, ρ-0.67, p<0.05 for λE). However, these relationships did not necessarily hold when sites were grouped by vegetation type. We also tested a model of k-means clustering plus regression to confirm the suitability of the Bayesian model for modelling these sites. The k-means approach performed similarly to the Bayesian model in terms of model fit, demonstrating the robustness of the Bayesian framework for exploring the role of environmental memory. Our results underline the importance of capturing memory effects in models used to project future responses to climate change, especially in water-limited ecosystems. Finally, we demonstrate a considerable variation in individual-site predictability, driven to a notable degree by environmental memory, and this should be considered when evaluating model performance across ecosystems

    A coupled ground heat flux-surface energy balance model of evaporation using thermal remote sensing observations

    Get PDF
    One of the major undetermined problems in evaporation (ET) retrieval using thermal infrared remote sensing is the lack of a physically based ground heat flux (G) model and its integration within the surface energy balance (SEB) equation. Here, we present a novel approach based on coupling a thermal inertia (TI)-based mechanistic G model with an analytical surface energy balance model, Surface Temperature Initiated Closure (STIC, version STIC1.2). The coupled model is named STIC-TI. The model is driven by noon–night (13:30 and 01:30 local time) land surface temperature, surface albedo, and a vegetation index from MODIS Aqua in conjunction with a clear-sky net radiation sub-model and ancillary meteorological information. SEB flux estimates from STIC-TI were evaluated with respect to the in situ fluxes from eddy covariance measurements in diverse ecosystems of contrasting aridity in both the Northern Hemisphere and Southern Hemisphere. Sensitivity analysis revealed substantial sensitivity of STIC-TI-derived fluxes due to the land surface temperature uncertainty. An evaluation of noontime G (Gi) estimates showed 12 %–21 % error across six flux tower sites, and a comparison between STIC-TI versus empirical G models also revealed the substantially better performance of the former. While the instantaneous noontime net radiation (RNi) and latent heat flux (LEi) were overestimated (15 % and 25 %), sensible heat flux (Hi) was underestimated (22 %). Overestimation (underestimation) of LEi (Hi) was associated with the overestimation of net available energy (RNi−Gi) and use of unclosed surface energy balance flux measurements in LEi (Hi) validation. The mean percent deviations in Gi and Hi estimates were found to be strongly correlated with satellite day–night view angle difference in parabolic and linear pattern, and a relatively weak correlation was found between day–night view angle difference versus LEi deviation. Findings from this parameter-sparse coupled G–ET model can make a valuable contribution to mapping and monitoring the spatiotemporal variability of ecosystem water stress and evaporation using noon–night thermal infrared observations from future Earth observation satellite missions such as TRISHNA, LSTM, and SBG
    corecore