519 research outputs found

    Protection status, human disturbance, snow cover and trapping drive density of a declining wolverine population in the Canadian Rocky Mountains

    Get PDF
    Protected areas are important in species conservation, but high rates of human-caused mortality outside their borders and increasing popularity for recreation can negatively affect wildlife populations. We quantified wolverine (Gulo gulo) population trends from 2011 to 2020 in > 14,000 km2 protected and non-protected habitat in southwestern Canada. We conducted wolverine and multi-species surveys using non-invasive DNA and remote camera-based methods. We developed Bayesian integrated models combining spatial capture-recapture data of marked and unmarked individuals with occupancy data. Wolverine density and occupancy declined by 39%, with an annual population growth rate of 0.925. Density within protected areas was 3 times higher than outside and declined between 2011 (3.6 wolverines/1000 km2) and 2020 (2.1 wolverines/1000 km2). Wolverine density and detection probability increased with snow cover and decreased near development. Detection probability also decreased with human recreational activity. The annual harvest rate of ≄ 13% was above the maximum sustainable rate. We conclude that humans negatively affected the population through direct mortality, sub-lethal effects and habitat impacts. Our study exemplifies the need to monitor population trends for species at risk—within and between protected areas—as steep declines can occur unnoticed if key conservation concerns are not identified and addressed

    Concentrations, ratios, and sinking fluxes of major bioelements at Ocean Station Papa

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Roca-Marti, M., Benitez-Nelson, C. R., Umhau, B. P., Wyatt, A. M., Clevenger, S. J., Pike, S., Horner, T. J., Estapa, M. L., Resplandy, L., & Buesseler, K. O. Concentrations, ratios, and sinking fluxes of major bioelements at Ocean Station Papa. Elementa: Science of the Anthropocene, 9(1), (2021): 00166, https://doi.org/10.1525/elementa.2020.00166.Fluxes of major bioelements associated with sinking particles were quantified in late summer 2018 as part of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign near Ocean Station Papa in the subarctic northeast Pacific. The thorium-234 method was used in conjunction with size-fractionated (1–5, 5–51, and >51 ÎŒm) concentrations of particulate nitrogen (PN), total particulate phosphorus (TPP), biogenic silica (bSi), and particulate inorganic carbon (PIC) collected using large volume filtration via in situ pumps. We build upon recent work quantifying POC fluxes during EXPORTS. Similar remineralization length scales were observed for both POC and PN across all particle size classes from depths of 50–500 m. Unlike bSi and PIC, the soft tissue–associated POC, PN, and TPP fluxes strongly attenuated from 50 m to the base of the euphotic zone (approximately 120 m). Cruise-average thorium-234-derived fluxes (mmol m–2 d–1) at 120 m were 1.7 ± 0.6 for POC, 0.22 ± 0.07 for PN, 0.019 ± 0.007 for TPP, 0.69 ± 0.26 for bSi, and 0.055 ± 0.022 for PIC. These bioelement fluxes were similar to previous observations at this site, with the exception of PIC, which was 1 to 2 orders of magnitude lower. Transfer efficiencies within the upper twilight zone (flux 220 m/flux 120 m) were highest for PIC (84%) and bSi (79%), followed by POC (61%), PN (58%), and TPP (49%). These differences indicate preferential remineralization of TPP relative to POC or PN and larger losses of soft tissue relative to biominerals in sinking particles below the euphotic zone. Comprehensive characterization of the particulate bioelement fluxes obtained here will support future efforts linking phytoplankton community composition and food-web dynamics to the composition, magnitude, and attenuation of material that sinks to deeper waters.The authors would like to acknowledge support from the National Aeronautics and Space Administration as part of the EXport Processes in the Ocean from RemoTe Sensing program awards 80NSSC17K0555 and 80NSSC17K0662. They also acknowledge the funding from the Woods Hole Oceanographic Institution’s Ocean Twilight Zone study for MRM and KOB, the National Science Foundation Graduate Research Fellowship Program for AMW, and the Ocean Frontier Institute for MRM

    Recovery of Wolverines in the Western United States: Recent Extirpation and Recolonization or Range Retraction and Expansion?

    Get PDF
    Wolverines were greatly reduced in number and possibly extirpated from the contiguous United States (U.S.) by the early 1900s. Wolverines currently occupy much of their historical range in Washington, Idaho, Montana, and Wyoming, but are absent from Utah and only single individuals are known to occur in California and Colorado. In response, the translocation of wolverines to California and Colorado is being considered. If wolverines are to be reintroduced, managers must identify appropriate source populations based on the genetic affinities of historical and modern wolverine populations. We amplified the mitochondrial control region of 13 museum specimens dating from the late 1800s to early 1900s and 209 wolverines from modern populations in the contiguous U.S. and Canada and combined results with previously published haplotypes. Collectively, these data indicated that historical wolverine populations in the contiguous U.S. were extirpated by the early 20th century, and that modern populations in the contiguous U.S. are likely the descendants of recent immigrants from the north. The Cali1 haplotype previously identified in California museum specimens was also common in historical samples from the southern Rocky Mountains, and likely evolved in isolation in the southern ice-free refugium that encompassed most of the contiguous U.S. during the last glaciation. However, when southern populations were extirpated, these matrilines were eliminated. Several of the other haplotypes found in historical specimens from the contiguous U.S. also occur in modern North American populations, and belong to a group of haplotypes that are associated with the rapid expansion of northern wolverine populations after the last glacial retreat. Modern wolverines in the contiguous U.S. are primarily haplotype A, which is the most common and widespread haplotype in Canada and Alaska. For the translocation of wolverines to California, Colorado, and other areas in the western U.S., potential source populations in the Canadian Rocky Mountains may provide the best mix of genetic diversity and appropriate learned behavior

    Nuclear localization and function of polypeptide ligands and their receptors: a new paradigm for hormone specificity within the mammary gland?

    Get PDF
    The specific effects triggered by polypeptide hormone/growth factor stimulation of mammary cells were considered mediated solely by receptor-associated signaling networks. A compelling body of new data, however, clearly indicates that polypeptide ligands and/or their receptors are transported into the nucleus, where they function directly to regulate the expression of specific transcription factors and gene loci. The intranuclear function of these complexes may contribute to the explicit functions associated with a given ligand, and may serve as new targets for pharmacologic intervention

    Context-dependent effects on spatial variation in deer-vehicle collisions

    Get PDF
    Identifying factors that contribute to the risk of wildlife‐vehicle collisions (WVCs) has been a key focus of wildlife managers, transportation safety planners and road ecologists for over three decades. Despite these efforts, few generalities have emerged which can help predict the occurrence of WVCs, heightening the uncertainty under which conservation, wildlife and transportation management decisions are made. Undermining this general understanding is the use of study area boundaries that are incongruent with major biophysical gradients, inconsistent data collection protocols among study areas and species‐specific interactions with roads. We tested the extent to which factors predicting the occurrence of deer‐vehicle collisions (DVCs) were general among five study areas distributed over a 11,400‐km2 region in the Canadian Rocky Mountains. In spite of our system‐wide focus on the same genus (i.e., Odocoileus hemionus and O. virginianus), study area delineation along major biophysical gradients, and use of consistent data collection protocols, we found that large‐scale biophysical processes influence the effect of localized factors. At the local scale, factors predicting WVC occurrence varied greatly between individual study areas. Distance to water was an important predictor of WVCs in three of the five study areas, while other variables had modest importance in only two of the five study areas. Thus, lack of generality in factors predicting WVCs may have less to do with methodological or taxonomic differences among study areas than the large‐scale, biophysical context within which the data were collected. These results highlight the critical need to develop a conceptual framework in road ecology that can unify the disparate results emerging from field studies on WVC occurrence

    The deal.II Library, Version 9.1

    Get PDF
    This paper provides an overview of the new features of the finite element library deal.II, version 9.1

    Genome‑wide association studies reveal novel loci for resistance to groundnut rosette disease in the African core groundnut collection

    Get PDF
    Groundnut is cultivated in several African countries where it is a major source of food, feed and income. One of the major constraints to groundnut production in Africa is groundnut rosette disease (GRD), which is caused by a complex of three agents: groundnut rosette assistor luteovirus, groundnut rosette umbravirus and its satellite RNA. Despite several years of breeding for GRD resistance, the genetics of the disease is not fully understood. The objective of the current study was to use the African core collection to establish the level of genetic variation in their response to GRD, and to map genomic regions responsible for the observed resistance. The African groundnut core genotypes were screened across two GRD hotspot locations in Uganda (Nakabango and Serere) for 3 seasons. The Area Under Disease Progress Curve combined with 7523 high quality SNPs were analyzed to establish marker-trait associations (MTAs). Genome-Wide Association Studies based on Enriched Compressed Mixed Linear Model detected 32 MTAs at Nakabango: 21 on chromosome A04, 10 on B04 and 1 on B08. Two of the significant markers were localised on the exons of a putative TIR-NBS-LRR disease resistance gene on chromosome A04. Our results suggest the likely involvement of major genes in the resistance to GRD but will need to be further validated with more comprehensive phenotypic and genotypic datasets. The markers identified in the current study will be developed into routine assays and validated for future genomics-assisted selection for GRD resistance in groundnut

    Groundnut Entered Post-genome Sequencing Era: Opportunities and Challenges in Translating Genomic Information from Genome to Field

    Get PDF
    Cultivated groundnut or peanut (Arachis hypogaea) is an allopolyploid crop with a large complex genome and genetic barrier for exchanging genetic diversity from its wild relatives due to ploidy differences. Optimum genetic and genomic resources are key for accelerating the process for trait mapping and gene discovery and deploying diagnostic markers in genomics-assisted breeding. The better utilization of different aspects of peanut biology such as genetics, genomics, transcriptomics, proteomics, epigenomics, metabolomics, and interactomics can be of great help to groundnut genetic improvement program across the globe. The availability of high-quality reference genome is core to all the “omics” approaches, and hence optimum genomic resources are a must for fully exploiting the potential of modern science into conventional breeding. In this context, groundnut is passing through a very critical and transformational phase by making available the required genetic and genomic resources such as reference genomes of progenitors, resequencing of diverse lines, transcriptome resources, germplasm diversity panel, and multi-parent genetic populations for conducting high-resolution trait mapping, identification of associated markers, and development of diagnostic markers for selected traits. Lastly, the available resources have been deployed in translating genomic information from genome to field by developing improved groundnut lines with enhanced resistance to root-knot nematode, rust, and late leaf spot and high oleic acid. In addition, the International Peanut Genome Initiative (IPGI) have made available the high-quality reference genome for cultivated tetraploid groundnut which will facilitate better utilization of genetic resources in groundnut improvement. In parallel, the development of high-density genotyping platforms, such as Axiom_Arachis array with 58 K SNPs, and constitution of training population will initiate the deployment of the modern breeding approach, genomic selection, for achieving higher genetic gains in less time with more precision
    • 

    corecore