91 research outputs found

    Faceting at the Silicon (100) Crystal-Melt Interface: Theory and Experiment

    Get PDF
    Molecular-dynamics simulations and in situ experimental observations of the melting and equilibrium structure of the crystalline Si(100)-melt interface are described. The equilibrium interface is structured, exhibiting facets established on (111) planes

    Critical temperature of the superfluid transition in bose liquids

    Full text link
    A phenomenological criterion for the superfluid transition is proposed, which is similar to the Lindemann criterion for the crystal melting. Then we derive a new formula for the critical temperature, relating TλT_{\lambda} to the mean kinetic energy per particle above the transition. The suppression of the critical temperature in a sufficiently dense liquid is described as a result of the quantum decoherence phenomenon. The theory can account for the observed dependence of TλT_{\lambda} on density in liquid helium and results in an estimate Tλ1.1T_{\lambda} \sim 1.1 K for molecular hydrogen.Comment: 4 pages, 1 fi

    Further Evidence Suggestive of a Solar Influence on Nuclear Decay Rates

    Full text link
    Recent analyses of nuclear decay data show evidence of variations suggestive of a solar influence. Analyses of datasets acquired at the Brookhaven National Laboratory (BNL) and at the Physikalisch-Technische Bundesanstalt (PTB) both show evidence of an annual periodicity and of periodicities with sidereal frequencies in the neighborhood of 12.25 year^{-1} (at a significance level that we have estimated to be 10^{-17}). It is notable that this implied rotation rate is lower than that attributed to the solar radiative zone, suggestive of a slowly rotating solar core. This leads us to hypothesize that there may be an "inner tachocline" separating the core from the radiative zone, analogous to the "outer tachocline" that separates the radiative zone from the convection zone. The Rieger periodicity (which has a period of about 154 days, corresponding to a frequency of 2.37 year^{-1}) may be attributed to an r-mode oscillation with spherical-harmonic indices l=3, m=1, located in the outer tachocline. This suggests that we may test the hypothesis of a solar influence on nuclear decay rates by searching BNL and PTB data for evidence of a "Rieger-like" r-mode oscillation, with l=3, m=1, in the inner tachocline. The appropriate search band for such an oscillation is estimated to be 2.00-2.28 year^{-1}. We find, in both datasets, strong evidence of a periodicity at 2.11 year^{-1}. We estimate that the probability of obtaining these results by chance is 10^{-12}.Comment: 12 pages, 6 figures, v2 has a color corrected Fig 6, a corrected reference, and a corrected typ

    Close-Packing of Clusters: Application to Al_100

    Get PDF
    The lowest energy configurations of close-packed clusters up to N=110 atoms with stacking faults are studied using the Monte Carlo method with Metropolis algorithm. Two types of contact interactions, a pair-potential and a many-atom interaction, are used. Enhanced stability is shown for N=12, 26, 38, 50, 59, 61, 68, 75, 79, 86, 100 and 102, of which only the sizes 38, 75, 79, 86, and 102 are pure FCC clusters, the others having stacking faults. A connection between the model potential and density functional calculations is studied in the case of Al_100. The density functional calculations are consistent with the experimental fact that there exist epitaxially grown FCC clusters starting from relatively small cluster sizes. Calculations also show that several other close-packed motifs existwith comparable total energies.Comment: 9 pages, 7 figure

    Site-Specific Fluorescence Polarization for Studying the Disaggregation of α-Synuclein Fibrils by Small Molecules

    Get PDF
    Fibrillar aggregates of the protein α-synuclein (αS) are one of the hallmarks of Parkinson’s disease. Here, we show that measuring the fluorescence polarization (FP) of labels at several sites on αS allows one to monitor changes in the local dynamics of the protein after binding to micelles or vesicles, and during fibril formation. Most significantly, these site-specific FP measurements provide insight into structural remodeling of αS fibrils by small molecules and have the potential for use in moderate-throughput screens to identify small molecules that could be used to treat Parkinson’s disease. © 2016 American Chemical Society

    Density functional study of Aun_n (n=2-20) clusters: lowest-energy structures and electronic properties

    Get PDF
    We have investigated the lowest-energy structures and electronic properties of the Aun_n(n=2-20) clusters based on density functional theory (DFT) with local density approximation. The small Aun_n clusters adopt planar structures up to n=6. Tabular cage structures are preferred in the range of n=10-14 and a structural transition from tabular cage-like structure to compact near-spherical structure is found around n=15. The most stable configurations obtained for Au13_{13} and Au19_{19} clusters are amorphous instead of icosahedral or fcc-like, while the electronic density of states sensitively depend on the cluster geometry. Dramatic odd-even alternative behaviors are obtained in the relative stability, HOMO-LUMO gaps and ionization potentials of gold clusters. The size evolution of electronic properties is discussed and the theoretical ionization potentials of Aun_n clusters compare well with experiments.Comment: 6 pages, 7 figure

    The Majorana neutrino masses, neutrinoless double beta decay and nuclear matrix elements

    Full text link
    The effective Majorana neutrino mass is evaluated by using the latest results of neutrino oscillation experiments. The problems of the neutrino mass spectrum,absolute mass scale of neutrinos and the effect of CP phases are addressed. A connection to the next generation of the neutrinoless double beta decay (0nbb-decay) experiments is discussed. The calculations are performed for 76Ge, 100Mo, 136Xe and 130Te by using the advantage of recently evaluated nuclear matrix elements with significantly reduced theoretical uncertainty. An importance of observation of the 0nbb-decay of several nuclei is stressed.Comment: 29 pages, 5 figures, EXO (10 t) experiment considere

    Coalescence of nanoscale metal clusters: Molecular-dynamics study

    Full text link
    We study the coalescence of nanoscale metal clusters in an inert-gas atmosphere using constant-energy molecular dynamics. The coalescence proceeds via atomic diffusion with the release of surface energy raising the temperature. If the temperature exceeds the melting point of the coalesced cluster, a molten droplet forms. If the temperature falls between the melting point of the larger cluster and those of the smaller clusters, a metastable molten droplet forms and freezes.Comment: 5 figure

    Effect of surrounding environment on atomic structure and equilibrium shape of growing nanocrystals: gold in/on SiO2

    Get PDF
    We report on the equilibrium shape and atomic structure of thermally-processed Au nanocrystals (NCs) as determined by high resolution transmission electron microscopy (TEM). The NCs were either deposited on SiO2surface or embedded in SiO2layer. Quantitative data on the NCs surface free energy were obtained via the inverse Wulff construction. Nanocrystals inside the SiO2layer are defect-free and maintain a symmetrical equilibrium shape during the growth. Nanocrystals on SiO2surface exhibit asymmetrical equilibrium shape that is characterized by the introduction of twins and more complex atomic defects above a critical size. The observed differences in the equilibrium shape and atomic structure evolution of growing NCs in and on SiO2is explained in terms of evolution in isotropic/anisotropic environment making the surface free energy function angular and/or radial symmetric/asymmetric affecting the rotational/translational invariance of the surface stress tensor
    corecore