128 research outputs found

    Terrestrial ecological risk analysis via dietary exposure at uranium mine sites in the Grand Canyon watershed (Arizona, USA)

    Get PDF
    The U.S. Department of the Interior recently included uranium (U) on a list of mineral commodities that are considered critical to economic and national security. The uses of U for commercial and residential energy production, defense applications, medical device technologies, and energy generation for space vehicles and satellites are known, but the environmental impacts of uranium extraction are not always well quantified. We conducted a screening-level ecological risk analysis based on exposure to miningrelated elements via diets and incidental soil ingestion for terrestrial biota to provide context to chemical characterization and exposures at breccia pipe U mines in northern Arizona. Relative risks, calculated as hazard quotients (HQs), were generally low for all biological receptor models. Our models screened for risk to omnivores and insectivores (HQs\u3e1) but not herbivores and carnivores. Uranium was not the driver of ecological risk; arsenic, cadmium, copper, and zinc were of concern for biota consuming ground-dwelling invertebrates. Invertebrate species composition should be considered when applying these models to other mining locations or future sampling at the breccia pipe mine sites. Dietary concentration thresholds (DCTs) were also calculated to understand food concentrations that may lead to ecological risk. The DCTs indicated that critical concentrations were not approached in our model scenarios, as evident in the very low HQs for most models. The DCTs may be used by natural resource and land managers as well as mine operators to screen or monitor for potential risk to terrestrial receptors as mine sites are developed and remediated in the future

    Assessment of Chronic Low-Dose Elemental and Radiological Exposures of Biota at the Kanab North Uranium Mine Site in the Grand Canyon Watershed

    Get PDF
    High-grade U ore deposits are in various stages of exploitation across the Grand Canyon watershed, yet the effects of U mining on ecological and cultural resources are largely unknown. Wecharacterized the concentrations of Al, As, Bi, Cd, Co, Cu, Fe, Pb, Hg, Mo, Ni, Se, Ag, Tl, Th, U, and Zn, gross alpha and beta activities, and U and Th radioisotopes in soil, vegetation (Hesperostipa comata, Artemisia tridentata, Tamarix chinensis), and rodents (Peromyscus maniculatus, P. boylii) to waste material at the Kanab North mine, a mine with decades-long surficial contamination, and compared the concentrations (P\u3c0.01) to those at a premining site (Canyon Mine). Rodent tissues were also analyzed for radium-226 and microscopic lesions. Radioactivities and some elemental concentrations (e.g., Co, Pb, U) were greater in the Kanab North mine biological samples than in Canyon Mine biota, indicating a mining-related elemental signature. Mean rodent Ra-226 (111 Bq/kg dry weight [dry wt]) was 3 times greater than expected, indicating radioactive disequilibrium. Multiple soil sample U concentrations exceeded a screening benchmark, growth inhibition thresholds for sensitive plants, and an EC20 for a soil arthropod. Lesions associated with metals exposure were also observed more frequently in rodents at Kanab North than those at Canyon Mine but could not be definitively attributed to U mining. Our results indicate that Kanab North biota have taken up U mining-related elements owing to chronic exposure to surficial contamination. However, no literature-based effects thresholds for small rodents were exceeded, and only a few soil and vegetation thresholds for sensitive species were exceeded; therefore, adverse effects to biota from U mining-related elements at Kanab North are unlikely despite chronic exposure

    Elemental and radionuclide exposures and uptakes by small rodents, invertebrates, and vegetation at active and post-production uranium mines in the Grand Canyon watershed

    Get PDF
    The effects of breccia pipe uranium mining in the Grand Canyon watershed (Arizona) on ecological and cultural resources are largely unknown. We characterized the exposure of biota to uranium and cooccurring ore body elements during active ore production and at a site where ore production had recently concluded. Our results indicate that biota have taken up uranium and other elements (e.g., arsenic, cadmium, copper, molybdenum, uranium) from exposure to ore and surficial contamination, like blowing dust. Results indicate the potential for prolonged exposure to elements and radionuclides upon conclusion of active ore production. Mean radium-226 in deer mice was up to 4 times greater than uranium-234 and uranium-238 in those same samples; this may indicate a potential for, but does not necessarily imply, radium-226 toxicity. Soil screening benchmarks for uranium and molybdenum and other toxicity thresholds for arsenic, copper, selenium, uranium (e.g., growth effects) were exceeded in vegetation, invertebrates, and rodents (Peromyscus spp., Thomomys bottae, Tamias dorsalis, Dipodomys deserti). However, the prevalence and severity of microscopic lesions in rodent tissues (as direct evidence of biological effects of uptake and exposure) could not be definitively linked to mining. Our data indicate that land managers might consider factors like species, seasonal changes in environmental concentrations, and bioavailability, when determining mine permitting and remediation in the Grand Canyon watershed. Ultimately, our results will be useful for site-specific ecological risk analysis and can support future decisions regarding the mineral extraction withdrawal in the Grand Canyon watershed and elsewhere

    Impaired Knowledge of Driving Laws Is Associated with Recommended Driving Cessation in Cognitively Impaired Older Adults

    Get PDF
    Background/Aims: The present study examined if knowledge of driving laws independently predicts on-the-road driving performance among cognitively impaired older adults. Methods: The current study consisted of retrospective observational analyses on 55 cognitively impaired older adults (77.9 ± 6.4 years) that completed an on-the-road driving evaluation, a 20-item knowledge test of driving laws, and a brief cognitive test battery. Results: Logistic regression found poorer performance on the knowledge test was significantly associated with greater likelihood of recommended driving cessation beyond important demographic and cognitive variables (p Conclusion: Cognitively impaired patients’ ability to drive may be related to their knowledge regarding common driving laws, in addition to their current level of cognitive functioning

    Genetic linkage mapping of economically important traits in cultivated tetraploid potato (<i>Solanum tuberosum</i> L.)

    Get PDF
    The objective of this study was to construct a single nucleotide polymorphism (SNP)-based genetic map at the cultivated tetraploid level to locate quantitative trait loci (QTL) contributing to economically important traits in potato (Solanum tuberosum L.). The 156 F(1) progeny and parents of a cross (MSL603) between “Jacqueline Lee” and “MSG227-2” were genotyped using the Infinium 8303 Potato Array. Furthermore, the progeny and parents were evaluated for foliar late blight reaction to isolates of the US-8 genotype of Phytophthora infestans (Mont.) de Bary and vine maturity. Linkage analyses and QTL mapping were performed using a novel approach that incorporates allele dosage information. The resulting genetic maps contained 1972 SNP markers with an average density of 1.36 marker per cM. QTL mapping identified the major source of late blight resistance in “Jacqueline Lee.” The best SNP marker mapped ∼0.54 Mb from a resistance hotspot on the long arm of chromosome 9. For vine maturity, the major-effect QTL was located on chromosome 5 with allelic effects from both parents. A candidate SNP marker for this trait mapped ∼0.25 Mb from the StCDF1 gene, which is a candidate gene for the maturity trait. The identification of markers for P. infestans resistance will enable the introgression of multiple sources of resistance through marker-assisted selection. Moreover, the discovery of a QTL for late blight resistance not linked to the QTL for vine maturity provides the opportunity to use marker-assisted selection for resistance independent of the selection for vine maturity classifications

    Novel survey method finds dramatic decline of wild cotton-top tamarin population

    Get PDF
    For conservation purposes, accurate methods are required to track cotton-top tamarins in their natural habitat. As existing census methods are not appropriate for surveying these monkeys, a lure-transect method combined with playback vocalization was used here to allow accurate counting of the animals

    Visual Analytics for Epidemiologists: Understanding the Interactions Between Age, Time, and Disease with Multi-Panel Graphs

    Get PDF
    Visual analytics, a technique aiding data analysis and decision making, is a novel tool that allows for a better understanding of the context of complex systems. Public health professionals can greatly benefit from this technique since context is integral in disease monitoring and biosurveillance. We propose a graphical tool that can reveal the distribution of an outcome by time and age simultaneously.We introduce and demonstrate multi-panel (MP) graphs applied in four different settings: U.S. national influenza-associated and salmonellosis-associated hospitalizations among the older adult population (≥65 years old), 1991-2004; confirmed salmonellosis cases reported to the Massachusetts Department of Public Health for the general population, 2004-2005; and asthma-associated hospital visits for children aged 0-18 at Milwaukee Children's Hospital of Wisconsin, 1997-2006. We illustrate trends and anomalies that otherwise would be obscured by traditional visualization techniques such as case pyramids and time-series plots.MP graphs can weave together two vital dynamics--temporality and demographics--that play important roles in the distribution and spread of diseases, making these graphs a powerful tool for public health and disease biosurveillance efforts

    The Statistics of Bulk Segregant Analysis Using Next Generation Sequencing

    Get PDF
    We describe a statistical framework for QTL mapping using bulk segregant analysis (BSA) based on high throughput, short-read sequencing. Our proposed approach is based on a smoothed version of the standard statistic, and takes into account variation in allele frequency estimates due to sampling of segregants to form bulks as well as variation introduced during the sequencing of bulks. Using simulation, we explore the impact of key experimental variables such as bulk size and sequencing coverage on the ability to detect QTLs. Counterintuitively, we find that relatively large bulks maximize the power to detect QTLs even though this implies weaker selection and less extreme allele frequency differences. Our simulation studies suggest that with large bulks and sufficient sequencing depth, the methods we propose can be used to detect even weak effect QTLs and we demonstrate the utility of this framework by application to a BSA experiment in the budding yeast Saccharomyces cerevisiae

    Gene Expression Profiling of Soft and Firm Atlantic Salmon Fillet

    Get PDF
    Texture of salmon fillets is an important quality trait for consumer acceptance as well as for the suitability for processing. In the present work we measured fillet firmness in a population of farmed Atlantic salmon with known pedigree and investigated the relationship between this trait and gene expression. Transcriptomic analyses performed with a 21 K oligonucleotide microarray revealed strong correlations between firmness and a large number of genes. Highly similar expression profiles were observed in several functional groups. Positive regression was found between firmness and genes encoding proteasome components (41 genes) and mitochondrial proteins (129 genes), proteins involved in stress responses (12 genes), and lipid metabolism (30 genes). Coefficients of determination (R2) were in the range of 0.64–0.74. A weaker though highly significant negative regression was seen in sugar metabolism (26 genes, R2 = 0.66) and myofiber proteins (42 genes, R2 = 0.54). Among individual genes that showed a strong association with firmness, there were extracellular matrix proteins (negative correlation), immune genes, and intracellular proteases (positive correlation). Several genes can be regarded as candidate markers of flesh quality (coiled-coil transcriptional coactivator b, AMP deaminase 3, and oligopeptide transporter 15) though their functional roles are unclear. To conclude, fillet firmness of Atlantic salmon depends largely on metabolic properties of the skeletal muscle; where aerobic metabolism using lipids as fuel, and the rapid removal of damaged proteins, appear to play a major role

    The Baker's Yeast Diploid Genome Is Remarkably Stable in Vegetative Growth and Meiosis

    Get PDF
    Accurate estimates of mutation rates provide critical information to analyze genome evolution and organism fitness. We used whole-genome DNA sequencing, pulse-field gel electrophoresis, and comparative genome hybridization to determine mutation rates in diploid vegetative and meiotic mutation accumulation lines of Saccharomyces cerevisiae. The vegetative lines underwent only mitotic divisions while the meiotic lines underwent a meiotic cycle every ∼20 vegetative divisions. Similar base substitution rates were estimated for both lines. Given our experimental design, these measures indicated that the meiotic mutation rate is within the range of being equal to zero to being 55-fold higher than the vegetative rate. Mutations detected in vegetative lines were all heterozygous while those in meiotic lines were homozygous. A quantitative analysis of intra-tetrad mating events in the meiotic lines showed that inter-spore mating is primarily responsible for rapidly fixing mutations to homozygosity as well as for removing mutations. We did not observe 1–2 nt insertion/deletion (in-del) mutations in any of the sequenced lines and only one structural variant in a non-telomeric location was found. However, a large number of structural variations in subtelomeric sequences were seen in both vegetative and meiotic lines that did not affect viability. Our results indicate that the diploid yeast nuclear genome is remarkably stable during the vegetative and meiotic cell cycles and support the hypothesis that peripheral regions of chromosomes are more dynamic than gene-rich central sections where structural rearrangements could be deleterious. This work also provides an improved estimate for the mutational load carried by diploid organisms
    corecore