137 research outputs found

    Infiltration parameters

    Get PDF
    Presented at the 2002 USCID/EWRI conference, Energy, climate, environment and water - issues and opportunities for irrigation and drainage on July 9-12 in San Luis Obispo, California.Includes bibliographical references.Infiltration characteristics are a major source of uncertainty in the design and management of surface irrigation systems. Understanding the sensitivity of the design to errors or variation in the design inputs is needed to develop management recommendations that account for this uncertainty. This paper further analyzes the sensitivity of the level basin design procedure proposed by Clemmens (1998). Results show that the recommended management approach, cutting off inflow when the water advances a fixed distance relative to the field length, works best when actual advance time is more than predicted. If actual advance time is the same or less than predicted, then cutoff based on time may be a better approach, independent from variations due to differences in infiltration, roughness, inflow, or all of these factors combined

    Volume compensation

    Get PDF
    Presented at the 2002 USCID/EWRI conference, Energy, climate, environment and water - issues and opportunities for irrigation and drainage on July 9-12 in San Luis Obispo, California.Includes bibliographical references.Using the gate-stroking method, this paper shows that a complex open-channel flow feedforward control problem can be treated as a series of linearly additive single flow-change control problems. A key element of this approach is determining the initial conditions for each single flow-change problem. An inadequate choice of initial conditions will result in under or overestimation of the canal storage volume change needed for the new steady-state conditions. These findings provide support to a simple feedforward control scheme based on volume compensation and time delay. An example is used to demonstrate that the simple scheduling approach is nearly as effective in controlling water levels as the complex gate-stroking approach

    Influence of Canal Geometry and Dynamics on Controllability

    Get PDF
    This paper presents the results of the Task Committee on Canal Automation Algorithms with regard to the influence of canal properties on the controllability of irrigation canals. While the control provided by individual algorithms was not evaluated, studies were performed to illustrate inherent hydraulic limitations—the inability of canal pools to recover rapidly from disturbances or flow perturbations. Studies were performed in nondimensional form to develop a better understanding of how pool properties influence pool response. Three such studies were performed. First, nondimensional backwater curves were developed for a range of canal conditions. The second study involved the propagation of waves initiated at the upstream end of a canal pool, as this is influenced by downstream boundary conditions. Finally, the response of pools to downstream withdrawals was examined in terms of their sluggish recovery even when the correct flow change is applied upstream. These results will help in understanding how canal properties influence the ability of operators to effectively control a canal either manually or automatically, and should influence future design practices

    Field Verification of Two-Dimensional Surface Irrigation Model

    Full text link

    An analysis of arthroscopic knot techniques – looking for the perfect knot

    Full text link

    The cardiac troponin C mutation Leu29Gln found in a patient with hypertrophic cardiomyopathy does not alter contractile parameters in skinned murine myocardium

    Get PDF
    The present study investigates the effects of the first mutation of troponin C (hcTnCL29Q) found in a patient with hypertrophic cardiomyopathy (HCM) on force–pCa relations and the interplay with phosphorylation of sarcomeric PKA substrates. In triton-skinned murine cardiac fibers, the endogenous mcTnC was extracted and the fibers were subsequently reconstituted with recombinant wild-type and mutant hcTnC. Force–pCa relations of preparations containing hcTnCL29Q or hcTnCWT were similar. Incubation of fibers reconstituted with the recombinant proteins with phosphatase to dephosphorylate sarcomeric PKA substrates induced an increase in Ca2+ sensitivity, slightly more pronounced (0.04 pCa units) in hcTnCL29Q-containing fibers. Incubation of the dephosphorylated fibers with PKA induced significant rightward shifts of force–pCa relations of similar magnitude with both, hcTnCL29Q and hcTnCWT. No significant effects of hcTnCL29Q on the velocity of unloaded shortening were observed. In conclusion, no major differences in contractile parameters of preparations containing hcTnCL29Q compared to hcTnCWT were observed. Therefore, it appears unlikely that hcTnCL29Q induces the development of HCM by affecting the regulation of Ca2+-activated force and interference with PKA-mediated modulation of the Ca2+ sensitivity of contraction

    The <i>N</i>-myristoylome of <i>Trypanosoma cruzi</i>

    Get PDF
    Protein N-myristoylation is catalysed by N-myristoyltransferase (NMT), an essential and druggable target in Trypanosoma cruzi, the causative agent of Chagas’ disease. Here we have employed whole cell labelling with azidomyristic acid and click chemistry to identify N-myristoylated proteins in different life cycle stages of the parasite. Only minor differences in fluorescent-labelling were observed between the dividing forms (the insect epimastigote and mammalian amastigote stages) and the non-dividing trypomastigote stage. Using a combination of label-free and stable isotope labelling of cells in culture (SILAC) based proteomic strategies in the presence and absence of the NMT inhibitor DDD85646, we identified 56 proteins enriched in at least two out of the three experimental approaches. Of these, 6 were likely to be false positives, with the remaining 50 commencing with amino acids MG at the N-terminus in one or more of the T. cruzi genomes. Most of these are proteins of unknown function (32), with the remainder (18) implicated in a diverse range of critical cellular and metabolic functions such as intracellular transport, cell signalling and protein turnover. In summary, we have established that 0.43–0.46% of the proteome is N-myristoylated in T. cruzi approaching that of other eukaryotic organisms (0.5–1.7%)

    Deep phenotyping of peripheral tissue facilitates mechanistic disease stratification in sporadic Parkinson’s disease

    Get PDF
    Mechanistic disease stratification will be crucial to develop a precision medicine approach for future disease modifying therapy in sporadic Parkinson’s disease (sPD). Mitochondrial and lysosomal dysfunction are key mechanisms in the pathogenesis of sPD and therefore promising targets for therapeutic intervention. We investigated mitochondrial and lysosomal function in skin fibroblasts of 100 sPD patients and 50 age-matched controls. A combination of cellular assays, RNA-seq based pathway analysis and genotyping was applied. Distinct subgroups with mitochondrial (mito-sPD) or lysosomal (lyso-sPD) dysfunction were identified. Mitochondrial dysfunction correlated with reduction in complex I and IV protein levels. RNA-seq based pathway analysis revealed marked activation of the lysosomal pathway with enrichment for lysosomal disease gene variants in lyso-sPD. Conversion of fibroblasts to induced neuronal progenitor cells and subsequent differentiation into tyrosine hydroxylase positive neurons confirmed and further enhanced both mitochondrial and lysosomal abnormalities. Treatment with ursodeoxycholic acid improved mitochondrial membrane potential and intracellular ATP levels even in sPD patient fibroblast lines with comparatively mild mitochondrial dysfunction. The results of our study suggest that in-depth phenotyping and focussed assessment of putative neuroprotective compounds in peripheral tissue are a promising approach towards disease stratification and precision medicine in sPD
    corecore