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ABSTRACT: This paper presents the results of the Task Committee on Canal Automation Algorithms with 
regard to the influence of canal properties on the controllability of irrigation canals. While the control provided 
by individual algorithms was not evaluated, studies were performed to illustrate inherent hydraulic limitations 
-the inability of canal pools to recover rapidly from disturbances or flow perturbations. Studies were performed 
in nondimensional form to develop a better understanding of how pool properties influence pool response. Three 
such studies were performed. First, nondimensional backwater curves were developed for a range of canal 
conditions. The second study involved the propagation of waves initiated at the upstream end of a canal pool, 
as this is influenced by downstream boundary conditions. Finally, the response of pools to downstream with­
drawals was examined in terms of their sluggish recovery even when the correct flow change is applied upstream. 
These results will help in understanding how canal properties influence the ability of operators to effectively 
control a canal either manually or automatically, and should influence future design practices. 

INTRODUCTION 

Over the past several decades, much attention has been 
given to methods for (1) Controlling canal downstream water 
levels or volume with feedback control; (2) routing flow 
changes through canals with open-loop or feedforward control; 
and (3) utilizing local structures for controlling either water 
levels or flows (see Malaterre et al. 1998; Rogers and Gous­
sard 1998; Bautista et al. 1997; Burt and Plusquellec 1990; 
and "Planning" 1987 for further details). However, the suc­
cess of any of these schemes is largely dependent upon the 
properties and characteristics of the canal itself, independent 
of the control method being used. This was one conclusion of 
the ASCE Task Committee on Canal Control Algorithms. 

There is little in the literature examining the limitations that 
canal properties place on controllability. Rogier et al. (in 
"Planning" 1987) describe the change in pool volume re­
quired to move from one steady state condition to another. 
The pool cross-sectional shape, slope, length, hydraulic resis­
tance, and water levels in relation to normal depth all influence 
this volume change. For application of Dynamic Regulation 
on the Canal de Provence, these relationships were determined 
for each canal pool. No analysis of the transient nature of the 
phenomenon was attempted. The task committee formed a 
group to look at the transient phenomenon in a generic way, 
applicable to different systems. 

First, a nondimensional representation of canal properties 
was developed to reduce the number of parameters required 
to display the results and to develop an understanding of the 
relationships that actually influence canal response (Strelkoff 
et al. 1995a). Next, nondimensional steady state backwater 
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curves were examined for a range of conditions. Strelkoff et 
al. (1995b) then examined the propagation of waves through 
a canal pool and the influence of the pool properties, especially 
the downstream boundary conditions, on the response of the 
water levels to flow changes. Burt et al. (1995) examined the 
influence of canal pool properties on the speed with which a 
canal could respond to unanticipated downstream withdrawals. 
This last study essentially determines the limitations on the 
ability of feedback control systems to achieve downstream 
control. From them, one can quantify the amount of flow 
change that can be accommodated by feedback alone. Greater 
flow changes require advance knowledge and feedforward 
routing, Le., control measures applied in anticipation of an 
expected event in order, for example, to avoid unacceptable 
changes in downstream water levels. These studies are inde­
pendent of gate hydraulics and control-algorithm characteris­
tics. 

Because of the important role played by pool properties in 
canal controllability, the task committee formulated a set of 
test cases, so that different algorithms could be tested under 
the same conditions (Clemmens et al. 1998). These test cases 
were intended to help algorithm developers judge their results 
on a broader basis than site-specific, perhaps easily control­
lable, conditions alone. The purpose of this paper is to present 
the findings of these task committee studies as an aid to un­
derstanding how various canal properties influence selection 
of control methods and determination of their limitations. 

STEADY STATE CHARACTERISTIC CURVES 
FORA POOL 

Fig. I, drawn from Deltour (1992), graphically displays ul­
timate pool-volume responses to control measures. These 
curves characterize the full range of steady states possible in 
a pool of given dimensions. Developed from multiple com­
puter simulations of backwater curves in a single, specific 
pool, they show how the volume in transit within the pool 
changes with flow rate and depth at the downstream end of 
the pool. The dashed curves are lines of constant depth at the 
upstream end; the solid curves are contours of downstream 
depth, The heavy solid curve on the right represents normal 
depth; upstream and downstream depths are identical. Ifdepths 
between normal and critical were included, they would occupy 
a narrow region to the right of the normal-depth curve (Deltour 
1992). 

As discharge rates in the canal are changed, depths and pool 
volumes change in response. Both responses are of interest. 
The depths, of course, are of interest in their influence on 
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FIG. 1. Steady State Characteristic Curves for Specified Pool: 
Stored Volume as Function of Flow Rate and Water Level (Del­
tour 1992; Burt et al. 1995) 

offtake flows and on the safety of canal operation. The volume 
changes and the accompanying discharges relate to the time 
necessary to effect the change in storage required to complete 
the process of adjustment to new flow rates. The diagram pro­
vides valuable insight into the controllability of the given pool. 

In terms of initial and final steady states, when wave action 
has died down and a new equilibrium state has evolved, Fig. 
1 can be used to chart the changes resulting from different 
control strategies. For example, with the control point at the 
downstream end of the pool, and the water depth there held, 
say, to 2.75 m, all possible states of checked-up, steady flow 
in the canal pool are represented by the heavy gray curve in 
the figure. Then, if the flow were to change, say, from 14 to 
20 m2/s, as shown by the heavy arrow A, the upstream depth 
will change from 1.89 to 2.20 m; furthermore, a volume of 
21,000 m3 must be added to the pool before a new steady state 
can be reached. 

Fig. 1 can also be used to examine constant-volume control 
based on a downstream control point. With inflow and outflow 
rates always identical, the volume in the pool remains con­
stant. Thus, for example, if the discharge was 14 m 3/s initially, 
with a downstream depth of 3.25 m (and 2.02 m upstream), 
and then we simultaneously increase the flow at both ends of 
the reach to 20 m3/s, the new downstream water level must be 
3.10 m, and the upstream depth, 2.28 m. This change is shown 
by the heavy arrow B in Fig. 1. With no changes in pool 
volume needed to effect the change in conditions, this response 
would be speedier than for the case represented by A. 

This approach was also used in Deltour (1992) to estimate 
the minimum depth reached in unsteady-flow simulations, be­
fore correction by the controller increasing the volume in the 
pool. The adequacy of this estimate was also tested in a field 
study (Sanfilippo 1994) on the MSIDD WM lateral canal, with 
favorable results. 

The curves of Fig. 1 were prepared for a specific canal pool. 
They cannot be used to predict response behavior in other 
pools, with different geometries or flow rates. To prepare or 
even present such curves in a general way, for the practical 
range of pool lengths, sizes, slopes, roughnesses, flow rates, 
etc., is practically impossible. Furthermore, these curves show 
only possible steady states and do not formally consider the 
transient depth changes. To include time variation in such a 
general study would be still less feasible. However, if such 
problems are viewed in dimensionless terms, there can be a 
considerable reduction in computational and presentational ef­
fort. We turn next to such dimensionless analyses. 

REDUCTION OF SAINT VENANT EQUATIONS TO 
DIMENSIONLESS FORM 

The rationale for viewing a problem-its governing equa­
tions, initial and boundary conditions, and solutions-in di­

mensionless form is that the same information can be con­
veyed with fewer variables, and hence in fewer graphs, charts, 
and tables. As a result, the general behavior of a system can 
be more readily discerned. Dimensionless variables are simply 
the usual variables, with dimensions of length, time, etc., di­
vided by appropriate constant reference variables having the 
same dimensions as the original variables. There are many 
possible choices of reference variables, each having its own 
advantages and disadvantages. Following Strelkoff et al. 
(1995a), we base the system of reference variables on normal 
depth at the design discharge of a pool. This limits the appli­
cability of the results to sloping canals. 

The equations of Saint Venant in dimensionless, momentum 
conservation form and with Manning roughness can be written 
(as in Strelkoff and Clemmens 1998) 

oQ* oA* 
-- + - + q* =0 (1)
ox* ot* 0 

oQ* a (Q*2) ]F~d~ -- + - - + u*q*[ at ox* A* 0 0 

Oh* Q*2n*2)+ A* - + R*413 ­( ox* A*2R*413 - 0 (2)N 

where x* =dimensionless distance along the channel, X/XR ; t* 
= dimensionless time, tltR ; Q* = dimensionless discharge, QI 
QR; A* = dimensionless cross-sectional area, AIY~; q"t = di­
mensionless distributed lateral outflow per unit length of chan­
nel, qoXRIQR; FN = Froude number of given design flow QN at 
normal depth YN; d~ = dimensionless hydraulic depth under 
design normal flow conditions [see (8)]; u"t = dimensionless 
longitudinal component of velocity of lateral outflow, uolVR ; 

h* = dimensionless water-surface elevation, hIYR ; R~ = di­
mensionless hydraulic radius under design normal flow RNIYN 
[see (9)]; n* = relative Manning coefficient, nlnR; and R* = 
dimensionless hydraulic radius, RIYR • The reference variables, 
subscripted R above, are based on various physical character­
istics of the flow at normal depth YN and the design canal 
discharge QN, in a reference section, say, at the upstream end 
of the canal with the bottom slope SOR and Manning roughness 
nR' The reference depth YR is then set to YN' With an aspect 
ratio a of the canal defined as the ratio of average breadth EN 
to depth under these normal conditions, i.e., as the dimension­
less normal area A~, 

(3) 

The reference discharge is defined as the ratio of normal dis­
charge to aspect ratio, 

_ QN
QR- (4)

a 

This definition of reference discharge ensures that dimension­
less velocities, rather than discharge, approach unity under 
normal conditions. 

The remainder of the reference variables follow from the 
definitions 

(Sa,b) 

and 

(6) 

It follows, too, that the characteristic reference velocity is the 
normal velocity, VR = QNIAN , and thus, that the dimensionless 



velocity approaches unity as normal depth is approached. In 
an alternate approach, QR could be set equal to QN so that 
Q~ = I (under design normal conditions); but then ~ would 
not, in general, equal unity. 

APPLICATION OF DIMENSIONLESS EQUATIONS 

A generalized study of canal behavior can be performed 
directly in dimensionless mode, with the equations, initial and 
boundary conditions, and solutions all in dimensionless form. 
The principal independent parameter in the governing equa­
tions (1 and 2) is the Froude number FN of normal depth at 
the design flow; d~ and R~ are shape parameters for the canal 
cross section, the first influencing dynamic wave speed, and 
the second, flow resistance. Deviations of Manning roughness 
from that in the reference section is given by n*, and bottom 
slopes varying with respect to the slope in the reference section 
by St. In addition to these parameters, transient solutions are 
governed by inflows and outflows to and from the system, gate 
movements, and the initial flow profile. All of these can be 
expressed in nondimensional form. 

Canal shape, for the symmetrical trapezoidal sections stud­
ied, is specified by b*, base width relative to normal depth, 
and side slopes s. With a dimensionless normal depth of unity, 
the shape factors A~, R~, and d~ follow. Indeed, the dimen­
sionless cross-sectional normal flow area and aspect ratio are 

AN 
A~ =a =""2 =b* + S (7) 

YN 

the dimensionless normal hydraulic depth, 

d~ =dN=AN = b* + S (8)
YN BN b* + 2s 

and the dimensionless normal hydraulic radius, 

RN b* + s 
(9)R~ =YN =b* + 2y'l+"'""S2 

Thus, all transverse dimensions of the flow are expressed as 
multiples of normal depth; all longitudinal canal dimensions 
would be input as multiples of XR • Pool length, then, would 
be specified as L *. In a uniform pool, n* and St would both 
be unity. Dimensionless design inflow Q~ would be a; its 
Froude number at normal depth FN must be specified. Any 
other dimensionless discharges would also be given in refer­
ence to QR' Gate openings and amount of checkup would be 
specified relative to normal depth, and gate-schedule times 
would be understood relative to TR [see (Sa)]. Dimensionless 
offtake outflow velocities (longitudinal components), u:, 
would be input as a fraction of characteristic, normal velocity 
(velocity at normal depth for the design inflow computed for 
the channel geometry and roughness at the reference section 
of the reach). These typically, are assumed to be zero. 

Interpretation of general dimensionless results-i.e., in ref­
erence to the real, dimensioned world-is facilitated through 
the concept of the hypothetical dimensioned channel. Speci­
fication of some normal-flow depth, Manning roughness, and 
normal Froude number allows all dimensionless results to be 
translated into real, dimensioned terms (Strelkoff and Clem­
mens 1998). 

For the steady state backwater-curve study following, a sim­
ple dimensionless model of nonuniform flow was employed. 
For the unsteady-flow analyses described herein, a custom­
built simulation model was utilized, (a) because standard com­
mercial models do not accommodate the form of (1) and (2); 
(b) as a matter of convenience for running large groups of 
simulations in a generalized study; and (c) to allow nonstan­
dard conditions to be readily included in the analysis. 

The simulation model, recast as a computer subroutine for 
the generalized studies, is based on a network of continuous 
characteristic curves stemming from the characteristic form of 
the Saint Venant equations (Strelkoff and Falvey 1993). The 
characteristic form is closest to the theoretical solution of the 
Saint Venant equations, and it is thought that some aspects of 
the solution might become apparent only with the character­
istics methodology. For example, gradual bore formation 
(Strelkoff 1992) could be missed altogether with other solution 
techniques. 

This subroutine would be called repeatedly by a main pro­
gram, which systematically changes the dimensionless canal­
pool geometry and dynamics in a predetermined pattern. At 
the conclusion of each simulation, pertinent input and output 
variables (geometry, initial Froude number, delay times) are 
automatically entered into a text file, one line per simulation. 
An auxiliary program would then read this text file, extract 
the desired data, and plot it. Additional simulations were per­
formed with an implicit finite-difference model for corrobo­
ration. 

DIMENSIONLESS BACKWATER CURVES 

Dimensionless steady state nonuniform flows exhibit a par­
ticularly simple form. In Fig. 2, steady-flow profiles of all 
checked-up canal pools are described by some portion of the 
single generalized backwater curve shown. In this case, the 
downstream limit is a checked-up depth equal to I.S times 
normal depth; variation of normal Froude number over a cus­
tomary range (0.1 < FN < 0.7) and variation of channel cross 
section and side slopes over their customary ranges (0.5 < b* 
< 3; 1 < s < 2) have little effect. 

PROPAGATION OF UPSTREAM CONTROL 
MEASURES ALONG A CANAL POOL 

In order to provide the required amount of water at delivery­
canal turnouts in a timely manner, some control measures must 
be applied upstream from the turnouts as demands change. 
Whether automatically or manually, pumps must be turned on 
and off, and canal gates need to be raised or lowered. Deter­
mination of the appropriate control measures is complicated 
by the fact that the response of the canal at the turnouts is not 
instantaneous. A substantial time delay typically exists be­
tween the implementation of a control measure at the upstream 
end of a canal pool and its arrival at a downstream point (Strel­
koff et al. I995b). 

Furthermore, the wave profile slumps as it propagates, so 
that different portions of the wave arrive at different times. 
The delay between the first harbinger of a sudden upstream 
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change and the substantial bulk of the wave increases with 
distance from the upstream end. If the pool were a prism of 
indefinite length, the wave profiles would eventually assume 
the fixed form of the well-known monoclinal rising wave 
(Henderson 1966, p. 372) as in Fig. 3, and all IX>rtions would 
propagate at the same, kinematic-shock, speed 

Q2 - Ql 
c= (10)

A2 - Al 

where the subscript 2 refers to the increased depth and dis­
charge upstream; and 1 refers to the initial, smaller values. But 
for a significant length of time, the form of the wave initiated 
upstream as a step increase would be gradually evolving, lead­
ing to the observed delays in arrival between the various wave 
components. Furthermore, nonprismatic canal flows preclude 
the evolution to a profile of fixed shape, and a case-specific 
numerical solution of the Saint Venant governing equations 
becomes necessary in order to predict the time delays. 

Fig. 4 shows the evolution of discharge hydrographs (shown 
relative to initial design flow, QN, rather than as Q*) in three 
canal pools, similar but for the downstream structure. In the 
figure, (a) corresponds to a normal-depth stage discharge re­
lation; (b) to a long-crested weir (duck bill with a length about 
21 times the initial normal depth, YN) of such height that the 
water depth upstream from the weir equals YN while the head 
on it is about 0.1 YN; and (c), to a reservoir, held to an elevation 
of YN above downstream channel invert. Thus, in every case, 
the initial dimensionless downstream depth in the pool is Yl!: 
= 1.0. In fact, the initial flow is uniform, at unit (dimension­
less) depth. Dimensionless width b* = 2; side slopes s = 0; 
length L * = 1; S~ = 1; and n* = 1. The initial Froude number 
in each case is FN = 0.3; d~ = 1; and R~ = 0.5. The upstream 
step increase in discharge in each case is 10% of the initial 
flow. 

Thus, for each case, the pool cross section is rectangular, 
and for the sake of definiteness, width b = 2 m; normal depth 
YN = 1 m; initial discharge QN = 1.9 m2/s; length L = 2300 m; 

FIG. 3. Typical Profile of Monocllnal Rising Wave: Long Wave 
Connecting "TWo Uniform Depths, Y1 and Y., Moving with Kine­
matic Shock Speed c 
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bottom slope So = 0.00044; and Manning n = 0.014. Other 
dimensions are of course possible, and still yield the same 
dimensionless parameters as the given example. In the exam­
ple case, the time reference value TR = 41 min. 

Hydrographs are shown at the 0, 1/4, 1/2, 3/4, and full­
length points. At once evident is that the toe of the wave ar­
rives at the same time in all cases. The bulk of the wave, on 
the other hand, when the downstream boundary condition is a 
normal-depth stage-discharge relation, arrives substantially de­
layed, as compared to the other downstream boundary forms. 
The long weir and reservoir give essentially the same results, 
which is not surprising since the intent of the long crest is to 
fix the water-surface elevation independent of the discharge. 

Fig. 5 shows similar tendencies for the same pool, but with 
a checked-up initial flow, provided in (a) by a submerged ra­
dial gate; in (b) by a normal-depth stage discharge relation 
with increased roughness downstream from the nominal end 
of the pool; and in (c) by the long weir. In each case, the water 
level was checked up, initially, to a depth about 1.5 YN' 

Again, the leading component of the disturbance arrives at 
the same time in each case. The bulk of the wave, with nearly 
the full increase, however, arrives latest with the gate, just a 
little sooner with the normal-depth stage-discharge relation, 
and much sooner with the constant downstream depth (long­
crested weir). 

A program of variation of pool and flow properties was 
initiated with the three downstream boundary conditions: sub­
merged gate, long-crested weir, and reservoir. Simulations 
were performed by the characteristics-based model in the first 
two cases, and with the SIC implicit finite-difference model in 
the third case for comparison ("SIC" 1992). In this initial 
study, cross sections were limited to rectangular, with a width 
two times the initial normal depth, a range of dimensionless 
pool lengths from 0.3 to 2.0, checked-up depths equal to 1.0 
and 1.25 times normal depth, and Froude numbers of the initial 
flow equal to 0.1, 0.3, and 0.5. The step increase in discharge 
was held to 10% of the initial flow. Relative times of arrival 
of 10% and 85% of the original upstream step increase are 
shown in Fig. 6 and 7. 

These curves represent the first steps in the development of 
more extensive curves, covering a wider range of conditions, 
which could be used at the initial stage of a project to estimate 
the delays required to bring conditions at the downstream end 
of a pool in line with upstream changes; i.e., to be able effec­
tively to use the modified discharge at the downstream end of 
the pool. The more general curves should show the effect of 
larger increases in discharge, nonzero side slopes, and other 
relative canal widths. As noted earlier in connection with the 
sample hydrographs, the delay in arrival of the initial stages 
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of the release wave (the 10% curves), is somewhat dependent 
on initial Froude number, but little dependent on the degree 
of check-up or the kind of control structure downstream. 

The 85% delay time varies significantly with checked depth, 
somewhat less so with Froude number, and is greatly depen­
dent on the nature of the downstream boundary. With the long­
crested weir or reservoir downstream, the delay of this com­
ponent is decreased with an increase in checked-up depth. 
With the submerged gate, the larger the checked-up depth, the 
greater the delay. With the gate, increasing Froude numbers 
result in increased delay; with the long-crested weir, the op­
posite trend is noted, except with yt = 1. At a dimensionless 
pool length of unity, the global delay is reduced by 30% if the 
downstream checked depth is close to normal depth, and 60­
75% if the downstream checked depth is close to 1.25 YN' The 
delay increases because, with increasing checkup, the head 
loss introduced by the gate increases the variation in level as 
the wave arrives. 

This confirms one of the advantages-reduced delay 
times-of introducing long-crested check structures (duck-bill 
weirs) to control the level on canals operating under upstream 
control (advance scheduling). The time lag introduced by the 
canal pools is seen to be an important constraint with this type 
of operation. 

RESPONSE OF CANALS TO DOWNSTREAM 
WITHDRAWALS AND SIMULTANEOUS 
UPSTREAM REPLACEMENTS 

Even if a controller were capable of inducing immediate 
and exact replacement of offtake withdrawals upstream from 
the point of withdrawal, the canal water depth at the offtake 
still decreases until after the replacements arrive. Then, very 
gradually, the depth returns to its original level (Burt et al. 
1995). 

The phenomena are controlled by gravity, resistance, pres­
sure, and inertial forces, the proportions varying with the spe­
cific circumstances: reach length, slope, roughness, cross sec­
tion, initial discharge, downstream conditions, including the 

degree of check-up, and withdrawal rate. A program of di­
mensionless unsteady-flow simulations with this simultaneous­
replacement scenario quantified the influence of pool geometry 
and dynamics on maximum, unsteady drawdown. Only par­
tially realized, the intent was to generate a pattern of solutions 
blanketing the practical range of interest. 

In the specified scenario, given fractions RQ of the initial 
flow rate are withdrawn suddenly and for an indefinite period 
from an offtake just upstream from the downstream gate (see 
Fig. 8). Simultaneously the same fraction is added upstream; 
it is assumed that the upstream gate is somehow controlled to 
produce this increase. The downstream gate remains at its orig­
inal setting, which yielded the initial checked-up depth at the 
downstream end of the pool. Downstream from the down­
stream gate, an indefinite length of additional canal of the 
same cross section, slope, and roughness as the given pool is 
assumed. As a result, the depth on the downstream side re­
mains at normal for whatever discharge is passed. The offtake 
discharge remains constant after the augmentation. However, 
in contrast to the preceding constant-volume example (arrow 
B, Fig. 1) with given gate discharge, now the discharge 
through the downstream gate varies in accord with variations 
in depth and discharge coefficient. Gate width is assumed 
equal to the base width of the canal trapezoidal cross section, 
resulting in a small decrease in water surface elevation as the 
flow enters the control structure. 

Typical discharge (again relative to normal discharge, QN) 
and depth hydrographs are shown in Fig. 8 for withdrawal 
fraction RQ =0.6, relative pool length L* =1.6, relative check­
up y~ = 1.3, and initial normal Froude number, FN =0.2. The 
relative base width in the canal, b* = 2; side slopes, s = 1.5; 
the gate opening relative to normal depth, D't, needed to 
achieve the given check-up, D't = 0.7. The numbers 1-6 rep-
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resent hydrograph locations: at the upstream end, at the quar­
ter, half, and three-quarter points, and at pool end on either 
side of the offtake. Station 6, in the gate structure downstream 
from the offtake, is shown as a dot-dash. Noteworthy is the 
extreme length of time required to restore original conditions 
at the gate, as the necessary changes in pool volume are ef­
fected. 

Fig. 9 is an example of generalized dimensionless graphs 
quantifying pool response in the chosen scenario. With relative 
drawdown defined as the maximum reduction in downstream 
depth divided by initial checked-up value, the curves show, 
for a 60% withdrawal fraction, the drawdown as a function of 
checked-up depth relative to normal depth, relative pool 
length, and initial Froude number. Complementary graphs 
would show the effects of different offtake ratios, relative bot­
tom widths, and canal side slopes. From such curves, one can 
establish whether the drawdown is tolerable even with an ex­
act, simultaneous replacement of discharge upstream, or 
whether anticipatory control is required. 

CONCLUSIONS 

The effect of canal hydraulic conditions on a steady back­
water curve is small when expressed in nondimensional form. 
This suggests that this nondimensional form is useful for ex­
amining canal-pool properties in general. 

It has been shown that pool properties have an important 
role to play in the response of pool levels and volumes to 
changes in flow, either known and anticipated or representing 
an unknown disturbance (e.g., unauthorized withdrawal, weed 
plug, etc.). Pool volume changes play an important role in 
controllability. These volume changes influence the speed of 
wave propagation, as demonstrated by differences in delay 
times stemming from different downstream control structures. 
Further, pool volume influences the water-level response to 
unanticipated downstream withdrawals. 

The amount of backwater at the downstream end of a pool 
has a huge effect on its controllability. The writers therefore 
no longer recommend that irrigation canal pools be designed 
with normal depth at the downstream end under maximum 
flow conditions. Some additional backwater depth is necessary 
to allow sufficient control. Unfortunately, the technical anal­
ysis presented here may be insufficient to provide the neces­
sary information for performing an economic analysis for the 
appropriate amount of backwater. 

Our analyses suggest that not all flow changes in a canal 
pool can be accommodated by feedback alone. The amount of 
flow change that can be handled just by feedback is dependent 
upon the pool properties, the amount of allowable depth or 
pool volume change, and the properties of the feedback con­
troller. This result emphasizes the need to include both feed­
back and feedforward components into canal control systems. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper: 

A = cross-sectional area (L2
); 

AN = cross-sectional area at nonnal depth in the characteristic 
flow (L); 

a ratio of average breadth to depth at nonnal depth for in­
flow, QN; QR = QNla;
 

B top width (breadth);
 
b =bottom width of trapezoidal section;
 

Da = gate opening; 
dN = hydraulic depth (ratio of area to top width) at nonnal depth 

at the characteristic discharge; 
FN = Froude number of characteristic discharge at nonnal depth 

in reference section; 
h = water-surface elevation (L); 
L = reach length (L); 
N = subscript symbolizing conditions at nonnal depth in the 

characteristic flow, QN, in the reference section; 
n = Manning n (LI/6);
 

nR Manning n in reference section (LI/6);
 
Q = discharge (L3IT);
 

QN = nonnal (characteristic) discharge, for calculating YR(see a) 
(L3IT); 

QR = reference discharge (L3IT); 



qo = distributed lateral outflow per unit length of channel (efT); 
R = hydraulic radius (cross-sectional area/wetted perimeter) 

(L); 
RN = hydraulic radius at normal depth in the characteristic flow 

(L); 
RQ = ratio of offtake withdrawal rate to initial flow, QN; 
SO = bottom slope; 

So. = bottom slope in a reference section; 
s = side slopes in a trapezoidal section; 

TR = reference time (T); 

t = time (T); 
UO = longitudinal component of velocity of lateral outflow (LI 

T); 
VR = reference velocity (LIT); 
XR = reference length for longitudinal dimensions (L); 

x = distance along the channel (L); 
YR = reference length for transverse dimensions (L); 
Yv = checked-up depth, at downstream end of canal pool; 
YN = normal depth at flow, QN in reference section (L); and 
* = symbolizes a dimensionless variable. 
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