73 research outputs found

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed

    Antidiabetic properties of dietary flavonoids: a cellular mechanism review

    Full text link

    Alkylene tether-length dependent gamma-aminobutyric acid type A receptor competitive antagonism by tacrine dimers

    No full text
    Bis(7)-tacrine was previously demonstrated as an antagonist of gamma-aminobutyric acid type A (GABA(A)) receptors. In this study, the effects of a series of alkylene-linked tacrine dimers on GABAA receptors were examined. In radioligand binding assay, the analogues differed in binding affinity for GABAA receptors, and potency monotonically increased as the tether was shortened from nine to two methylenes. Bis(2)-tacrine, the shortest tacrine dimer, could displace [H-3]muscimol from rat brain membranes with an IC50 of 0.48 M, which was 11, 13 and 525 times more potent than the GABAA receptor antagonist (+)-bicucul line, bis(7)-tacrine and tacrine, respectively. In whole-cell patch-clamp recordings, these dimeric tacrine analogues competitively antagonized GABA-induced inward current with a rank order of potency of bis(2)-tacrine > bicuculline > bis(7)-tacrine > bis(9)-tacrine > tacrine, and the potency of bis(2)-tacrine was 11, 18 and 487 times higher than that of (+)bicuculline, bis(7)-tacrine and tacrine, respectively. Bis(2)-tacrine shifted the GABA concentration-response curve to the right in a parallel manner, and the inhibition was voltage-independent between -80 and +20 mV. It can be concluded that the shorter the alkylene linkage in tacrine dimers the stronger the binding affinity and higher the antagonistic effect on the GABAA receptor will be. (c) 2006 Elsevier Ltd. All rights reserved
    • …
    corecore