10 research outputs found

    Diffusion MRI reveals in vivo and non-invasively changes in astrocyte function induced by an aquaporin-4 inhibitor.

    No full text
    The Glymphatic System (GS) has been proposed as a mechanism to clear brain tissue from waste. Its dysfunction might lead to several brain pathologies, including the Alzheimer's disease. A key component of the GS and brain tissue water circulation is the astrocyte which is regulated by acquaporin-4 (AQP4), a membrane-bound water channel on the astrocytic end-feet. Here we investigated the potential of diffusion MRI to monitor astrocyte activity in a mouse brain model through the inhibition of AQP4 channels with TGN-020. Upon TGN-020 injection, we observed a significant decrease in the Sindex, a diffusion marker of tissue microstructure, and a significant increase of the water diffusion coefficient (sADC) in cerebral cortex and hippocampus compared to saline injection. These results indicate the suitability of diffusion MRI to monitor astrocytic activity in vivo and non-invasively

    Differential effects of aquaporin-4 channel inhibition on BOLD fMRI and diffusion fMRI responses in mouse visual cortex.

    No full text
    The contribution of astrocytes to the BOLD fMRI and DfMRI responses in visual cortex of mice following visual stimulation was investigated using TGN-020, an aquaporin 4 (AQP4) channel blocker, acting as an astrocyte function perturbator. Under TGN-020 injection the amplitude of the BOLD fMRI response became significantly higher. In contrast no significant changes in the DfMRI responses and the electrophysiological responses were observed. Those results further confirm the implications of astrocytes in the neurovascular coupling mechanism underlying BOLD fMRI, but not in the DfMRI responses which remained unsensitive to astrocyte function perturbation

    Awake functional MRI detects neural circuit dysfunction in a mouse model of autism

    Get PDF
    MRI has potential as a translational approach from rodents to humans. However, given that mouse functional MRI (fMRI) uses anesthetics for suppression of motion, it has been difficult to directly compare the result of fMRI in “unconsciousness” disease model mice with that in “consciousness” patients. We develop awake fMRI to investigate brain function in 15q dup mice, a copy number variation model of autism. Compared to wild-type mice, we find that 15q dup is associated with whole-brain functional hypoconnectivity and diminished fMRI responses to odors of stranger mice. Ex vivo diffusion MRI reveals widespread anomalies in white matter ultrastructure in 15q dup mice, suggesting a putative anatomical substrate for these functional hypoconnectivity. We show that d-cycloserine (DCS) treatment partially normalizes these anormalies in the frontal cortex of 15q dup mice and rescues some social behaviors. Our results demonstrate the utility of awake rodent fMRI and provide a rationale for further investigation of DCS therapy

    Subjective Cognitive Decline Is Associated With Altered Default Mode Network Connectivity in Individuals With a Family History of Alzheimer's Disease

    No full text
    Background: Both subjective cognitive decline (SCD) and a family history of Alzheimer's disease (AD) portend risk of brain abnormalities and progression to dementia. Posterior default mode network (pDMN) connectivity is altered early in the course of AD. It is unclear whether SCD predicts similar outcomes in cognitively normal individuals with a family history of AD. Methods: We studied 124 asymptomatic individuals with a family history of AD (age 64 ± 5 years). Participants were categorized as having SCD if they reported that their memory was becoming worse (SCD+). We used extensive neuropsychological assessment to investigate five different cognitive domain performances at baseline (n = 124) and 1 year later (n = 59). We assessed interconnectivity among three a priori defined ROIs: pDMN, anterior ventral DMN, medial temporal memory system (MTMS), and the connectivity of each with the rest of brain. Results: Sixty-eight (55%) participants reported SCD. Baseline cognitive performance was comparable between groups (all false discovery rate-adjusted p values >.05). At follow-up, immediate and delayed memory improved across groups, but the improvement in immediate memory was reduced in SCD+ compared with SCD− (all false discovery rate–adjusted p values <.05). When compared with SCD−, SCD+ subjects showed increased pDMN–MTMS connectivity (false discovery rate–adjusted p <.05). Higher connectivity between the MTMS and the rest of the brain was associated with better baseline immediate memory, attention, and global cognition, whereas higher MTMS and pDMN–MTMS connectivity were associated with lower immediate memory over time (all false discovery rate–adjusted p values <.05). Conclusions: SCD in cognitively normal individuals is associated with diminished immediate memory practice effects and a brain connectivity pattern that mirrors early AD-related connectivity failure
    corecore