42 research outputs found

    Avens Root (Geum Urbanum L.) Extract Discovered by Target-Based Screening Exhibits Antidiabetic Activity in the Hen's Egg Test Model and Drosophila melanogaster

    Get PDF
    Medicinal plant extracts are becoming increasingly important as an alternative for traditional drugs against diabetes mellitus (DM). For this reason, we initialized a target-based screening of 111 root extracts from an open access plant extract library (PECKISH) by ascertaining their in-vitro inhibitory efficacy on α-glucosidase. The two most active extracts Geum urbanum L. (roseroot) and Rhodiola rosea L. (avens root) were further tested for their antidiabetic activities in terms of their impact on different regulatory key points of glucose homeostasis. To this end, various enzyme- and cell culture-based in-vitro assays were employed including the determination of sodium-dependent glucose transporter 1 (SGLT1) activity in Caco-2 monolayers by Ussing chambers and of glucose transporter 4 (GLUT4) translocation in a GFP-reporter cell line. Subsequently, the antidiabetic potential of the root extracts were further evaluated in in-vivo models, namely hen's eggs test and the fruit fly Drosophila melanogaster. Avens root extract was found to be a more potent inhibitor of the enzymes α-glucosidase and dipeptidyl peptidase-4 (DPP4) than roseroot extract. Most importantly, only avens root extract exhibited antidiabetic activity in the two in-vivo models eliciting a reduced blood glucose level in the in-ovo model and a decline of the triglyceride level in a dietary starch-induced D. melanogaster obesity model. Analyses of the polyphenolic composition of the avens root extract by HPLC revealed a high content of ellagic acid and its derivatives as well as ellagitannins such as pedunculagin, stenophyllanin, stachyurin, casuarinin and gemin A. In conclusion, avens root extract represents a promising medicinal plant that should be considered in further in-vivo studies on hyperglycemia in laboratory rodents and humans

    Evidence from Studies with Heat-Stressed Caco-2 Cells, C. elegans and Growing Broilers

    Get PDF
    Climatic changes and heat stress have become a great challenge in the livestock industry, negatively affecting, in particular, poultry feed intake and intestinal barrier malfunction. Recently, phytogenic feed additives were applied to reduce heat stress effects on animal farming. Here, we investigated the effects of ginseng extract using various in vitro and in vivo experiments. Quantitative real-time PCR, transepithelial electrical resistance measurements and survival assays under heat stress conditions were carried out in various model systems, including Caco-2 cells, Caenorhabditis elegans and jejunum samples of broilers. Under heat stress conditions, ginseng treatment lowered the expression of HSPA1A (Caco-2) and the heat shock protein genes hsp-1 and hsp-16.2 (both in C. elegans), while all three of the tested genes encoding tight junction proteins, CLDN3, OCLN and CLDN1 (Caco-2), were upregulated. In addition, we observed prolonged survival under heat stress in Caenorhabditis elegans, and a better performance of growing ginseng-fed broilers by the increased gene expression of selected heat shock and tight junction proteins. The presence of ginseng extract resulted in a reduced decrease in transepithelial resistance under heat shock conditions. Finally, LC-MS analysis was performed to quantitate the most prominent ginsenosides in the extract used for this study, being Re, Rg1, Rc, Rb2 and Rd. In conclusion, ginseng extract was found to be a suitable feed additive in animal nutrition to reduce the negative physiological effects caused by heat stress. View Full-Tex

    Pinaceae Pine Resins (Black Pine, Shore Pine, Rosin, and Baltic Amber) as Natural Dielectrics for Low Operating Voltage, Hysteresis‐Free, Organic Field Effect Transistors

    Get PDF
    AbstractFour pinaceae pine resins analyzed in this study: black pine, shore pine, Baltic amber, and rosin demonstrate excellent dielectric properties, outstanding film forming, and ease of processability from ethyl alcohol solutions. Their trap‐free nature allows fabrication of virtually hysteresis‐free organic field effect transistors operating in a low voltage window with excellent stability under bias stress. Such green constituents represent an excellent choice of materials for applications targeting biocompatibility and biodegradability of electronics and sensors, within the overall effort of sustainable electronics development and environmental friendliness

    The Heat Treatment of Pink Zoisite

    No full text
    Natural pink zoisites owe their color to a high concentration of manganese paired with low concentrations of other coloring elements such as vanadium or titanium. Upon conventional heating, such stones typically suffer from the reduction of Mn3+ to the colorless Mn2+ species alongside the destruction of the brownish yellow color that is related to titanium. We have processed manganese containing zoisites under the high pressure of pure oxygen which allowed the manganese to remain oxidized, while the brownish yellow color component was still successfully removed. Depending on the vanadium level, the treated gems show a pink to purplish pink color. Detection of this treatment is not easy as the temperature is too low to result in a change in internal features, but a combination of UV-Vis-NIR spectroscopy and trace element chemistry provided by LA-ICP-MS give evidence of such treatment

    Determination of demantoid garnet origin by chemical fingerprinting

    No full text
    Demantoid garnets are among the most valuable gemstones in the world and their prices vary depending on the location they are found. Thus, a reference set of stones with known origins was assembled and their chemical composition analyzed with laser ablationinductively coupled plasma mass spectrometry. It was shown that the three major sources, Russia, Namibia, and Madagascar, could be distinguished by using a plot of the manganese/titanium ratio versus the sum of chromium and vanadium in combination with the aluminum content. Even within Russia it was possible to separate some deposits using elemental composition despite some stones having color zones and therefore a varying concentration of some elements.(VLID)364710

    Chemometric Modeling of Trace Element Data for Origin Determination of Demantoid Garnets

    No full text
    The determination of country of origin poses a common problem in the appraisal of gemstones and is in many cases still based on the observation of inclusions and growth features of a gem, whereas chemical analysis is only done by major labs. We have used Laser Ablation Inductively Coupled Plasma Mass Spectrometry to analyze the trace element profiles of demantoid garnets from six different countries and identified a set of six elements, which are magnesium, aluminum, titanium, vanadium, chromium, and manganese, that are necessary to assign the mining regions with a good certainty. By using the logarithms of the trace element concentrations and subjecting them to chemometric modeling, we were able to separate the demantoids originating from Russia, Pakistan, Namibia, Iran, and Madagascar very well, leaving only Italy with some uncertainty. Results are presented for an “all origins” model as well as pair-wise comparison of two locations at a time, which lead to even better results
    corecore