196 research outputs found

    Purification of fusion proteins expressed by pEX3 and a truncated pEX3 derivative

    Get PDF
    AbstractA derivative of the pEX3 expression vector was constructed that codes for the first 407 amino acids of the 1051 amino acids of the pEX3 fusion protein. The amount of truncated fusion protein (40 mg/g cells), obtained by expression in E. coli, was similar to that produced by the original pEX3 vector. The truncated fusion protein was purified more easily from E. coli contaminants than the original fusion protein by washing with 2 M urea and 0.5% Triton X-100

    An improved Plasmodium cynomolgi genome assembly reveals an unexpected methyltransferase gene expansion.

    Get PDF
    Background: Plasmodium cynomolgi, a non-human primate malaria parasite species, has been an important model parasite since its discovery in 1907. Similarities in the biology of P. cynomolgi to the closely related, but less tractable, human malaria parasite P. vivax make it the model parasite of choice for liver biology and vaccine studies pertinent to P. vivax malaria. Molecular and genome-scale studies of P. cynomolgi have relied on the current reference genome sequence, which remains highly fragmented with 1,649 unassigned scaffolds and little representation of the subtelomeres. Methods: Using long-read sequence data (Pacific Biosciences SMRT technology), we assembled and annotated a new reference genome sequence, PcyM, sourced from an Indian rhesus monkey. We compare the newly assembled genome sequence with those of several other Plasmodium species, including a re-annotated P. coatneyi assembly. Results: The new PcyM genome assembly is of significantly higher quality than the existing reference, comprising only 56 pieces, no gaps and an improved average gene length. Detailed manual curation has ensured a comprehensive annotation of the genome with 6,632 genes, nearly 1,000 more than previously attributed to P. cynomolgi. The new assembly also has an improved representation of the subtelomeric regions, which account for nearly 40% of the sequence. Within the subtelomeres, we identified more than 1300 Plasmodium interspersed repeat (pir) genes, as well as a striking expansion of 36 methyltransferase pseudogenes that originated from a single copy on chromosome 9. Conclusions: The manually curated PcyM reference genome sequence is an important new resource for the malaria research community. The high quality and contiguity of the data have enabled the discovery of a novel expansion of methyltransferase in the subtelomeres, and illustrates the new comparative genomics capabilities that are being unlocked by complete reference genomes

    Safety and immunogenicity of multi-antigen AMA1-based vaccines formulated with CoVaccine HT™ and Montanide ISA 51 in rhesus macaques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increasing the breadth of the functional antibody response through immunization with <it>Plasmodium falciparum </it>apical membrane antigen 1 (<it>Pf</it>AMA1) multi-allele vaccine formulations has been demonstrated in several rodent and rabbit studies. This study assesses the safety and immunogenicity of three <it>Pf</it>AMA1 Diversity-Covering (DiCo) vaccine candidates formulated as an equimolar mixture (DiCo mix) in CoVaccine HT™ or Montanide ISA 51, as well as that of a <it>Pf</it>AMA1-MSP1<sub>19 </sub>fusion protein formulated in Montanide ISA 51.</p> <p>Methods</p> <p>Vaccine safety in rhesus macaques was monitored by animal behaviour observation and assessment of organ and systemic functions through clinical chemistry and haematology measurements. The immunogenicity of vaccine formulations was assessed by enzyme-linked immunosorbent assays and <it>in vitro </it>parasite growth inhibition assays with three culture-adapted <it>P. falciparum </it>strains.</p> <p>Results</p> <p>These data show that both adjuvants were well tolerated with only transient changes in a few of the chemical and haematological parameters measured. DiCo mix formulated in CoVaccine HT™ proved immunologically and functionally superior to the same candidate formulated in Montanide ISA 51. Immunological data from the fusion protein candidate was however difficult to interpret as four out of six immunized animals were non-responsive for unknown reasons.</p> <p>Conclusions</p> <p>The study highlights the safety and immunological benefits of DiCo mix as a potential human vaccine against blood stage malaria, especially when formulated in CoVaccine HT™, and adds to the accumulating data on the specificity broadening effects of DiCo mix.</p

    Immunization with different PfAMA1 alleles in sequence induces clonal imprint humoral responses that are similar to responses induced by the same alleles as a vaccine cocktail in rabbits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Antibodies to key <it>Plasmodium falciparum </it>surface antigens have been shown to be important effectors that mediate clinical immunity to malaria. The cross-strain fraction of anti-malarial antibodies may however be required to achieve</p> <p>strain-transcending immunity. Such antibody responses against <it>Plasmodium falciparum </it>apical membrane antigen 1 (<it>Pf</it>AMA1), a vaccine target molecule that is expressed in both liver and blood stages of the parasite, can be elicited through immunization with a mixture of allelic variants of the parasite molecule. Cross-strain antibodies are most likely elicited against epitopes that are shared by the allelic antigens in the vaccine cocktail.</p> <p>Methods</p> <p>A standard competition ELISA was used to address whether the antibody response can be further focused on shared epitopes by exclusively boosting these common determinants through immunization of rabbits with different <it>Pf</it>AMA1 alleles in sequence. Th<it>e in vitro </it>parasite growth inhibition assay was used to further evaluate the functional effects of the broadened antibody response that is characteristic of multi-allele vaccine strategies.</p> <p>Results</p> <p>A mixed antigen immunization protocol elicited humoral responses that were functionally similar to those elicited by a sequential immunization protocol (p > 0.05). Sequential exposure to the different <it>Pf</it>AMA1 allelic variants induced immunological recall of responses to previous alleles and yielded functional cross-strain antibodies that would be capable of optimal growth inhibition of variant parasites at high enough concentrations.</p> <p>Conclusions</p> <p>These findings may have implications for the current understanding of the natural acquisition of clinical immunity to malaria as well as for rational vaccine design.</p

    Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species.

    Get PDF
    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P. knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the long-tailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system

    Absolute seasonal temperature estimates from clumped isotopes in bivalve shells suggest warm and variable greenhouse climate

    Get PDF
    Seasonal variability in sea surface temperatures plays a fundamental role in climate dynamics and species distribution. Seasonal bias can also severely compromise the accuracy of mean annual temperature reconstructions. It is therefore essential to better understand seasonal variability in climates of the past. Many reconstructions of climate in deep time neglect this issue and rely on controversial assumptions, such as estimates of sea water oxygen isotope composition. Here we present absolute seasonal temperature reconstructions based on clumped isotope measurements in bivalve shells which, critically, do not rely on these assumptions. We reconstruct highly precise monthly sea surface temperatures at around 50 °N latitude from individual oyster and rudist shells of the Campanian greenhouse period about 78 million years ago, when the seasonal range at 50 °N comprised 15 to 27 °C. In agreement with fully coupled climate model simulations, we find that greenhouse climates outside the tropics were warmer and more seasonal than previously thought. We conclude that seasonal bias and assumptions about seawater composition can distort temperature reconstructions and our understanding of past greenhouse climates

    Malaria infection by sporozoite challenge induces high functional antibody titres against blood stage antigens after a DNA prime, poxvirus boost vaccination strategy in Rhesus macaques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A DNA prime, poxvirus (COPAK) boost vaccination regime with four antigens, i.e. a combination of two <it>Plasmodium knowlesi </it>sporozoite (<it>csp/ssp2</it>) and two blood stage (<it>ama1/msp1</it><sub><it>42</it></sub>) genes, leads to self-limited parasitaemia in 60% of rhesus monkeys and survival from an otherwise lethal infection with <it>P. knowlesi</it>. In the present study, the role of the blood stage antigens in protection was studied in depth, focusing on antibody formation against the blood stage antigens and the functionality thereof.</p> <p>Methods</p> <p>Rhesus macaques were immunized with the four-component vaccine and subsequently challenged i.v. with 100 <it>P. knowlesi </it>sporozoites. During immunization and challenge, antibody titres against the two blood stage antigens were determined, as well as the <it>in vitro </it>growth inhibition capacity of those antibodies. Antigen reversal experiments were performed to determine the relative contribution of antibodies against each of the two blood stage antigens to the inhibition.</p> <p>Results</p> <p>After vaccination, PkAMA1 and PkMSP1<sub>19 </sub>antibody titres in vaccinated animals were low, which was reflected in low levels of inhibition by these antibodies as determined by <it>in vitro </it>inhibition assays. Interestingly, after sporozoite challenge antibody titres against blood stage antigens were boosted over 30-fold in both protected and not protected animals. The <it>in vitro </it>inhibition levels increased to high levels (median inhibitions of 59% and 56% at 6 mg/mL total IgG, respectively). As growth inhibition levels were not significantly different between protected and not protected animals, the ability to control infection appeared cannot be explained by GIA levels. Judged by <it>in vitro </it>antigen reversal growth inhibition assays, over 85% of the inhibitory activity of these antibodies was directed against PkAMA1.</p> <p>Conclusions</p> <p>This is the first report that demonstrates that a DNA prime/poxvirus boost vaccination regimen induces low levels of malaria parasite growth inhibitory antibodies, which are boosted to high levels upon challenge. No association could, however, be established between the levels of inhibitory capacity <it>in vitro </it>and protection, either after vaccination or after challenge.</p

    KAI407, a potent non-8-aminoquinoline compound that kills Plasmodium cynomolgi early dormant liver stage parasites in vitro.

    Get PDF
    Preventing relapses of Plasmodium vivax malaria through a radical cure depends on use of the 8-aminoquinoline primaquine, which is associated with safety and compliance issues. For future malaria eradication strategies, new, safer radical curative compounds that efficiently kill dormant liver stages (hypnozoites) will be essential. A new compound with potential radical cure activity was identified using a low-throughput assay of in vitro-cultured hypnozoite forms of Plasmodium cynomolgi (an excellent and accessible model for Plasmodium vivax). In this assay, primary rhesus hepatocytes are infected with P. cynomolgi sporozoites, and exoerythrocytic development is monitored in the presence of compounds. Liver stage cultures are fixed after 6 days and stained with anti-Hsp70 antibodies, and the relative proportions of small (hypnozoite) and large (schizont) forms relative to the untreated controls are determined. This assay was used to screen a series of 18 known antimalarials and 14 new non-8-aminoquinolines (preselected for blood and/or liver stage activity) in three-point 10-fold dilutions (0.1, 1, and 10 μM final concentrations). A novel compound, designated KAI407 showed an activity profile similar to that of primaquine (PQ), efficiently killing the earliest stages of the parasites that become either primary hepatic schizonts or hypnozoites (50% inhibitory concentration [IC50] for hypnozoites, KAI407, 0.69 μM, and PQ, 0.84 μM; for developing liver stages, KAI407, 0.64 μM, and PQ, 0.37 μM). When given as causal prophylaxis, a single oral dose of 100 mg/kg of body weight prevented blood stage parasitemia in mice. From these results, we conclude that KAI407 may represent a new compound class for P. vivax malaria prophylaxis and potentially a radical cure

    Admixture in Humans of Two Divergent Plasmodium knowlesi Populations Associated with Different Macaque Host Species

    Get PDF
    Human malaria parasite species were originally acquired from other primate hosts and subsequently became endemic, then spread throughout large parts of the world. A major zoonosis is now occurring with Plasmodium knowlesi from macaques in Southeast Asia, with a recent acceleration in numbers of reported cases particularly in Malaysia. To investigate the parasite population genetics, we developed sensitive and species-specific microsatellite genotyping protocols and applied these to analysis of samples from 10 sites covering a range of >1,600 km within which most cases have occurred. Genotypic analyses of 599 P.knowlesi infections (552 in humans and 47 in wild macaques) at 10 highly polymorphic loci provide radical new insights on the emergence. Parasites from sympatric long-tailed macaques (Macaca fascicularis) and pig-tailed macaques (M. nemestrina) were very highly differentiated (FST = 0.22, and K-means clustering confirmed two host-associated subpopulations). Approximately two thirds of human P. knowlesi infections were of the longtailed macaque type (Cluster 1), and one third were of the pig-tailed-macaque type (Cluster 2), with relative proportions varying across the different sites. Among the samples from humans, there was significant indication of genetic isolation by geographical distance overall and within Cluster 1 alone. Across the different sites, the level of multi-locus linkage disequilibrium correlated with the degree of local admixture of the two different clusters. The widespread occurrence of both types of P. knowlesi in humans enhances the potential for parasite adaptation in this zoonotic system
    corecore