2,211 research outputs found

    Context matters in curriculum reform : an analysis of change in surgical training

    Get PDF
    Open Access via the Wiley OA Agreement Royal College of Surgeons of Edinburgh. Grant Number: RG-15026 Funding Information: This work was supported by the Royal College of Surgeons of Edinburgh [Grant number RG‐15026]. Funding InformationPeer reviewedPublisher PD

    It's making me think outside the box at times : a qualitative study of dynamic capabilities in surgical training.

    Get PDF
    Acknowledgements The authors would like to thank Graham Haddock, Satheesh Yalamarthi, and Mark Vella for their assistance with participant recruitment. Funding Information: This work was supported by the Royal College of Surgeons of Edinburgh [Grant number RG-15026].Peer reviewedPublisher PD

    Scratching beneath the surface : how organisational culture influences curricular reform

    Get PDF
    Funding information: This work was supported by the Royal College of Surgeons of Edinburgh [Grant number RG-15026]. ACKNOWLEDGEMENTS We would like to thank Graham Haddock, Satheesh Yalamarthi and Mark Vella for their assistance with participant recruitment, and all the surgical trainees and trainers who took part in the study.Peer reviewedPublisher PD

    Fast frequency discrimination and phoneme recognition using a biomimetic membrane coupled to a neural network

    Full text link
    In the human ear, the basilar membrane plays a central role in sound recognition. When excited by sound, this membrane responds with a frequency-dependent displacement pattern that is detected and identified by the auditory hair cells combined with the human neural system. Inspired by this structure, we designed and fabricated an artificial membrane that produces a spatial displacement pattern in response to an audible signal, which we used to train a convolutional neural network (CNN). When trained with single frequency tones, this system can unambiguously distinguish tones closely spaced in frequency. When instead trained to recognize spoken vowels, this system outperforms existing methods for phoneme recognition, including the discrete Fourier transform (DFT), zoom FFT and chirp z-transform, especially when tested in short time windows. This sound recognition scheme therefore promises significant benefits in fast and accurate sound identification compared to existing methods.Comment: 7 pages, 4 figure

    The relationship between school type and academic performance at medical school:A national, multi-cohort study

    Get PDF
    Acknowledgements We thank UKMED for releasing the data for this project via a competitive bid process. We are grateful to the following for their support of the application to UKMED for this and other research projects: Dr Sally Curtis (University of Southampton, UK), Dr Sandra Nicholson (Barts and The London School of Medicine and Dentistry, UK), Professor Peter Johnston (NHS Education for Scotland, UK) and Dr Rhoda MacKenzie (University of Aberdeen, UK). We thank Daniel Smith and Andy Knapton of the General Medical Council of the UK for their support for the application and throughout the project, particularly regarding data linkage and troubleshooting. We thank Dr Gordon Prescott (University of Aberdeen, UK) for the statistical support. Funding This study is part of Ben Kumwenda’s doctoral programme of research funded by the UKCAT Research Panel, of which JC and RG are members.Peer reviewedPublisher PD

    Relationship between sociodemographic factors and specialty destination of UK trainee doctors:a national cohort study

    Get PDF
    We are grateful to UKMED for releasing the data for this project. We also are grateful to the following for their support of the application to UKMED for this and other research projects: Dr Sally Curtis (University of Southampton, UK), Dr Sandra Nicholson (Barts and The London School of Medicine and Dentistry, UK). We thank Daniel Smith and Andy Knapton of the General Medical Council of the UK for their support for the application and throughout the project, particularly regarding data linkage and troubleshooting.Peer reviewedPublisher PD

    Dynamic changes and prognostic value of pulmonary congestion by lung ultrasound in acute and chronic heart failure: a systematic review

    Get PDF
    Aims: Pulmonary congestion is an important finding in patients with heart failure (HF) that can be quantified by lung ultrasound (LUS). We conducted a systematic review to describe dynamic changes in LUS findings of pulmonary congestion (B-lines) in HF and to examine the prognostic utility of B-lines in HF. Methods and results: We searched online databases for studies conducted in patients with chronic or acute HF that used LUS to assess dynamic changes or the prognostic value of pulmonary congestion. We included studies in adult populations, published in English, and conducted in ≥25 patients. Of 1327 identified studies, 13 (25–290 patients) met the inclusion criteria: six reported on dynamic changes in LUS findings (438 patients) and seven on the prognostic value of B-lines in HF (953 patients). In acute HF, B-line number changed within as few as 3 h of HF treatment. In acute HF, ≥15 B-lines on 28-zone LUS at discharge identified patients at a more than five-fold risk for HF readmission or death. Similarly, in ambulatory patients with chronic HF, ≥3 B-lines on five- or eight-zone LUS marked those at a nearly four-fold risk for 6-month HF hospitalization or death. Conclusions: Lung ultrasound findings change rapidly in response to HF therapy. This technique may represent a useful and non-invasive method to track dynamic changes in pulmonary congestion. Furthermore, residual congestion at the time of discharge in acute HF or in ambulatory patients with chronic HF may identify those at high risk for adverse events

    The effects of bioactive akermanite on physiochemical, drug-delivery, and biological properties of poly(lactide-co-glycolide) beads

    Get PDF
    Poly(lactide-co-glycolide) (PLGA) beads have been widely studied as a potential drug/protein carrier. The main shortcomings of PLGA beads are that they lack bioactivity and controllable drug-delivery ability, and their acidic degradation by-products can lead to pH decrease in the vicinity of the implants. Akermanite (AK) (Ca(2) MgSi(2) O(7) ) is a novel bioactive ceramic which has shown excellent bioactivity and degradation in vivo. This study aimed to incorporate AK to PLGA beads to improve the physiochemical, drug-delivery, and biological properties of PLGA beads. The microstructure of beads was characterized by SEM. The effect of AK incorporating into PLGA beads on the mechanical strength, apatite-formation ability, the loading and release of BSA, and the proliferation, and differentiation of bone marrow stromal cells (BMSCs) was investigated. The results showed that the incorporation of AK into PLGA beads altered the anisotropic microporous structure into homogenous one and improved their compressive strength and apatite-formation ability in simulated body fluids (SBF). AK neutralized the acidic products from PLGA beads, leading to stable pH value of 7.4 in biological environment. AK led to a sustainable and controllable release of bovine serum albumin (BSA) in PLGA beads. The incorporation of AK into PLGA beads enhanced the proliferation and alkaline phosphatase activity of BMSCs. This study implies that the incorporation of AK into PLGA beads is a promising method to enhance their physiochemical and biological property. AK/PLGA composite beads are a potential bioactive drug-delivery system for bone tissue repair

    Coulomb Blockade in a Coupled Nanomechanical Electron Shuttle

    Full text link
    We demonstrate single electron shuttling through two coupled nanomechanical pendula. The pendula are realized as nanopillars etched out of the semiconductor substrate. Coulomb blockade is found at room temperature, allowing metrological applications. By controlling the mechanical shuttling frequency we are able to validate the different regimes of electron shuttling
    corecore