76 research outputs found
Singular Casimir Elements of the Euler Equation and Equilibrium Points
The problem of the nonequivalence of the sets of equilibrium points and
energy-Casimir extremal points, which occurs in the noncanonical Hamiltonian
formulation of equations describing ideal fluid and plasma dynamics, is
addressed in the context of the Euler equation for an incompressible inviscid
fluid. The problem is traced to a Casimir deficit, where Casimir elements
constitute the center of the Lie-Poisson algebra underlying the Hamiltonian
formulation, and this leads to a study of the symplectic operator defining the
Poisson bracket. The kernel of the symplectic operator, for this typical
example of an infinite-dimensional Hamiltonian system for media in terms of
Eulerian variables, is analyzed. For two-dimensional flows, a rigorously
solvable system is formulated. The nonlinearity of the Euler equation makes the
symplectic operator inhomogeneous on phase space (the function space of the
state variable), and it is seen that this creates a singularity where the
nullity of the symplectic operator (the "dimension" of the center) changes.
Singular Casimir elements stemming from this singularity are unearthed using a
generalization of the functional derivative that occurs in the Poisson bracket
On integrability of Hirota-Kimura type discretizations
We give an overview of the integrability of the Hirota-Kimura discretization
method applied to algebraically completely integrable (a.c.i.) systems with
quadratic vector fields. Along with the description of the basic mechanism of
integrability (Hirota-Kimura bases), we provide the reader with a fairly
complete list of the currently available results for concrete a.c.i. systems.Comment: 47 pages, some minor change
Integrable discretizations of some cases of the rigid body dynamics
A heavy top with a fixed point and a rigid body in an ideal fluid are
important examples of Hamiltonian systems on a dual to the semidirect product
Lie algebra . We give a Lagrangian derivation of
the corresponding equations of motion, and introduce discrete time analogs of
two integrable cases of these systems: the Lagrange top and the Clebsch case,
respectively. The construction of discretizations is based on the discrete time
Lagrangian mechanics on Lie groups, accompanied by the discrete time Lagrangian
reduction. The resulting explicit maps on are Poisson with respect to
the Lie--Poisson bracket, and are also completely integrable. Lax
representations of these maps are also found.Comment: arXiv version is already officia
Action functionals for relativistic perfect fluids
Action functionals describing relativistic perfect fluids are presented. Two
of these actions apply to fluids whose equations of state are specified by
giving the fluid energy density as a function of particle number density and
entropy per particle. Other actions apply to fluids whose equations of state
are specified in terms of other choices of dependent and independent fluid
variables. Particular cases include actions for isentropic fluids and
pressureless dust. The canonical Hamiltonian forms of these actions are
derived, symmetries and conserved charges are identified, and the boundary
value and initial value problems are discussed. As in previous works on perfect
fluid actions, the action functionals considered here depend on certain
Lagrange multipliers and Lagrangian coordinate fields. Particular attention is
paid to the interpretations of these variables and to their relationships to
the physical properties of the fluid.Comment: 40 pages, plain Te
Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras
Darboux coordinates are constructed on rational coadjoint orbits of the
positive frequency part \wt{\frak{g}}^+ of loop algebras. These are given by
the values of the spectral parameters at the divisors corresponding to
eigenvector line bundles over the associated spectral curves, defined within a
given matrix representation. A Liouville generating function is obtained in
completely separated form and shown, through the Liouville-Arnold integration
method, to lead to the Abel map linearization of all Hamiltonian flows induced
by the spectral invariants. Serre duality is used to define a natural
symplectic structure on the space of line bundles of suitable degree over a
permissible class of spectral curves, and this is shown to be equivalent to the
Kostant-Kirillov symplectic structure on rational coadjoint orbits. The general
construction is given for or , with
reductions to orbits of subalgebras determined as invariant fixed point sets
under involutive automorphisms. The case is shown to reproduce
the classical integration methods for finite dimensional systems defined on
quadrics, as well as the quasi-periodic solutions of the cubically nonlinear
Schr\"odinger equation. For , the method is applied to the
computation of quasi-periodic solutions of the two component coupled nonlinear
Schr\"odinger equation.Comment: 61 pg
IA-CCF: Individual accountability for permissioned ledgers
Permissioned ledger systems allow a consortium of members that do not trust one another to execute transactions safely on a set of replicas. Such systems typically use Byzantine fault tolerance (BFT) protocols to distribute trust, which only ensures safety when fewer than 1/3 of the replicas misbehave. Providing guarantees beyond this threshold is a challenge: current systems assume that the ledger is corrupt and fail to identify misbehaving replicas or hold the members that operate them accountable—instead all members share the blame. We describe IA-CCF, a new permissioned ledger system that provides individual accountability. It can assign blame to the individual members that operate misbehaving replicas regardless of the number of misbehaving replicas or members. IA-CCF achieves this by signing and logging BFT protocol messages in the ledger, and by using Merkle trees to provide clients with succinct, universally-verifiable receipts as evidence of successful transaction execution. Anyone can audit the ledger against a set of receipts to discover inconsistencies and identify replicas that signed contradictory statements. IACCF also supports changes to consortium membership and replicas by tracking signing keys using a sub-ledger of governance transactions. IA-CCF provides strong disincentives to misbehavior with low overhead: it executes 47,000 tx/s while providing clients with receipts in two network round trips
Dust as a Standard of Space and Time in Canonical Quantum Gravity
The coupling of the metric to an incoherent dust introduces into spacetime a
privileged dynamical reference frame and time foliation. The comoving
coordinates of the dust particles and the proper time along the dust worldlines
become canonical coordinates in the phase space of the system. The Hamiltonian
constraint can be resolved with respect to the momentum that is canonically
conjugate to the dust time. Imposition of the resolved constraint as an
operator restriction on the quantum states yields a functional Schr\"{o}dinger
equation. The ensuing Hamiltonian density has an extraordinary feature: it
depends only on the geometric variables, not on the dust coordinates or time.
This has three important consequences. First, the functional Schr\"{o}dinger
equation can be solved by separating the dust time from the geometric
variables. Second, the Hamiltonian densities strongly commute and therefore can
be simultaneously defined by spectral analysis. Third, the standard constraint
system of vacuum gravity is cast into a form in which it generates a true Lie
algebra. The particles of dust introduce into space a privileged system of
coordinates that allows the supermomentum constraint to be solved explicitly.
The Schr\"{o}dinger equation yields a conserved inner product that can be
written in terms of either the instantaneous state functionals or the solutions
of constraints. Examples of gravitational observables are given, though neither
the intrinsic metric nor the extrinsic curvature are observables. Disregarding
factor--ordering difficulties, the introduction of dust provides a satisfactory
phenomenological approach to the problem of time in canonical quantum gravity.Comment: 56 pages (REVTEX file + 3 postscipt figure files
Closed geodesics and billiards on quadrics related to elliptic KdV solutions
We consider algebraic geometrical properties of the integrable billiard on a
quadric Q with elastic impacts along another quadric confocal to Q. These
properties are in sharp contrast with those of the ellipsoidal Birkhoff
billiards. Namely, generic complex invariant manifolds are not Abelian
varieties, and the billiard map is no more algebraic. A Poncelet-like theorem
for such system is known. We give explicit sufficient conditions both for
closed geodesics and periodic billiard orbits on Q and discuss their relation
with the elliptic KdV solutions and elliptic Calogero systemComment: 23 pages, Latex, 1 figure Postscrip
Wave Solutions of Evolution Equations and Hamiltonian Flows on Nonlinear Subvarieties of Generalized Jacobians
The algebraic-geometric approach is extended to study solutions of
N-component systems associated with the energy dependent Schrodinger operators
having potentials with poles in the spectral parameter, in connection with
Hamiltonian flows on nonlinear subvariaties of Jacobi varieties. The systems
under study include the shallow water equation and Dym type equation. The
classes of solutions are described in terms of theta-functions and their
singular limits by using new parameterizations. A qualitative description of
real valued solutions is provided
Resistência a Phytophthora sojae em genótipos de soja da Embrapa em 2023.
Apresenta resultados de avaliações de resistência completa e parcial à podridão radicular de fitóftora de genótipos de soja, realizadas na Embrapa Trigo em 2023
- …