76 research outputs found

    Singular Casimir Elements of the Euler Equation and Equilibrium Points

    Full text link
    The problem of the nonequivalence of the sets of equilibrium points and energy-Casimir extremal points, which occurs in the noncanonical Hamiltonian formulation of equations describing ideal fluid and plasma dynamics, is addressed in the context of the Euler equation for an incompressible inviscid fluid. The problem is traced to a Casimir deficit, where Casimir elements constitute the center of the Lie-Poisson algebra underlying the Hamiltonian formulation, and this leads to a study of the symplectic operator defining the Poisson bracket. The kernel of the symplectic operator, for this typical example of an infinite-dimensional Hamiltonian system for media in terms of Eulerian variables, is analyzed. For two-dimensional flows, a rigorously solvable system is formulated. The nonlinearity of the Euler equation makes the symplectic operator inhomogeneous on phase space (the function space of the state variable), and it is seen that this creates a singularity where the nullity of the symplectic operator (the "dimension" of the center) changes. Singular Casimir elements stemming from this singularity are unearthed using a generalization of the functional derivative that occurs in the Poisson bracket

    On integrability of Hirota-Kimura type discretizations

    Full text link
    We give an overview of the integrability of the Hirota-Kimura discretization method applied to algebraically completely integrable (a.c.i.) systems with quadratic vector fields. Along with the description of the basic mechanism of integrability (Hirota-Kimura bases), we provide the reader with a fairly complete list of the currently available results for concrete a.c.i. systems.Comment: 47 pages, some minor change

    Integrable discretizations of some cases of the rigid body dynamics

    Full text link
    A heavy top with a fixed point and a rigid body in an ideal fluid are important examples of Hamiltonian systems on a dual to the semidirect product Lie algebra e(n)=so(n)Rne(n)=so(n)\ltimes\mathbb R^n. We give a Lagrangian derivation of the corresponding equations of motion, and introduce discrete time analogs of two integrable cases of these systems: the Lagrange top and the Clebsch case, respectively. The construction of discretizations is based on the discrete time Lagrangian mechanics on Lie groups, accompanied by the discrete time Lagrangian reduction. The resulting explicit maps on e(n)e^*(n) are Poisson with respect to the Lie--Poisson bracket, and are also completely integrable. Lax representations of these maps are also found.Comment: arXiv version is already officia

    Action functionals for relativistic perfect fluids

    Get PDF
    Action functionals describing relativistic perfect fluids are presented. Two of these actions apply to fluids whose equations of state are specified by giving the fluid energy density as a function of particle number density and entropy per particle. Other actions apply to fluids whose equations of state are specified in terms of other choices of dependent and independent fluid variables. Particular cases include actions for isentropic fluids and pressureless dust. The canonical Hamiltonian forms of these actions are derived, symmetries and conserved charges are identified, and the boundary value and initial value problems are discussed. As in previous works on perfect fluid actions, the action functionals considered here depend on certain Lagrange multipliers and Lagrangian coordinate fields. Particular attention is paid to the interpretations of these variables and to their relationships to the physical properties of the fluid.Comment: 40 pages, plain Te

    Darboux Coordinates and Liouville-Arnold Integration in Loop Algebras

    Get PDF
    Darboux coordinates are constructed on rational coadjoint orbits of the positive frequency part \wt{\frak{g}}^+ of loop algebras. These are given by the values of the spectral parameters at the divisors corresponding to eigenvector line bundles over the associated spectral curves, defined within a given matrix representation. A Liouville generating function is obtained in completely separated form and shown, through the Liouville-Arnold integration method, to lead to the Abel map linearization of all Hamiltonian flows induced by the spectral invariants. Serre duality is used to define a natural symplectic structure on the space of line bundles of suitable degree over a permissible class of spectral curves, and this is shown to be equivalent to the Kostant-Kirillov symplectic structure on rational coadjoint orbits. The general construction is given for g=gl(r)\frak{g}=\frak{gl}(r) or sl(r)\frak{sl}(r), with reductions to orbits of subalgebras determined as invariant fixed point sets under involutive automorphisms. The case g=sl(2)\frak{g=sl}(2) is shown to reproduce the classical integration methods for finite dimensional systems defined on quadrics, as well as the quasi-periodic solutions of the cubically nonlinear Schr\"odinger equation. For g=sl(3)\frak{g=sl}(3), the method is applied to the computation of quasi-periodic solutions of the two component coupled nonlinear Schr\"odinger equation.Comment: 61 pg

    IA-CCF: Individual accountability for permissioned ledgers

    Get PDF
    Permissioned ledger systems allow a consortium of members that do not trust one another to execute transactions safely on a set of replicas. Such systems typically use Byzantine fault tolerance (BFT) protocols to distribute trust, which only ensures safety when fewer than 1/3 of the replicas misbehave. Providing guarantees beyond this threshold is a challenge: current systems assume that the ledger is corrupt and fail to identify misbehaving replicas or hold the members that operate them accountable—instead all members share the blame. We describe IA-CCF, a new permissioned ledger system that provides individual accountability. It can assign blame to the individual members that operate misbehaving replicas regardless of the number of misbehaving replicas or members. IA-CCF achieves this by signing and logging BFT protocol messages in the ledger, and by using Merkle trees to provide clients with succinct, universally-verifiable receipts as evidence of successful transaction execution. Anyone can audit the ledger against a set of receipts to discover inconsistencies and identify replicas that signed contradictory statements. IACCF also supports changes to consortium membership and replicas by tracking signing keys using a sub-ledger of governance transactions. IA-CCF provides strong disincentives to misbehavior with low overhead: it executes 47,000 tx/s while providing clients with receipts in two network round trips

    Dust as a Standard of Space and Time in Canonical Quantum Gravity

    Get PDF
    The coupling of the metric to an incoherent dust introduces into spacetime a privileged dynamical reference frame and time foliation. The comoving coordinates of the dust particles and the proper time along the dust worldlines become canonical coordinates in the phase space of the system. The Hamiltonian constraint can be resolved with respect to the momentum that is canonically conjugate to the dust time. Imposition of the resolved constraint as an operator restriction on the quantum states yields a functional Schr\"{o}dinger equation. The ensuing Hamiltonian density has an extraordinary feature: it depends only on the geometric variables, not on the dust coordinates or time. This has three important consequences. First, the functional Schr\"{o}dinger equation can be solved by separating the dust time from the geometric variables. Second, the Hamiltonian densities strongly commute and therefore can be simultaneously defined by spectral analysis. Third, the standard constraint system of vacuum gravity is cast into a form in which it generates a true Lie algebra. The particles of dust introduce into space a privileged system of coordinates that allows the supermomentum constraint to be solved explicitly. The Schr\"{o}dinger equation yields a conserved inner product that can be written in terms of either the instantaneous state functionals or the solutions of constraints. Examples of gravitational observables are given, though neither the intrinsic metric nor the extrinsic curvature are observables. Disregarding factor--ordering difficulties, the introduction of dust provides a satisfactory phenomenological approach to the problem of time in canonical quantum gravity.Comment: 56 pages (REVTEX file + 3 postscipt figure files

    Closed geodesics and billiards on quadrics related to elliptic KdV solutions

    Get PDF
    We consider algebraic geometrical properties of the integrable billiard on a quadric Q with elastic impacts along another quadric confocal to Q. These properties are in sharp contrast with those of the ellipsoidal Birkhoff billiards. Namely, generic complex invariant manifolds are not Abelian varieties, and the billiard map is no more algebraic. A Poncelet-like theorem for such system is known. We give explicit sufficient conditions both for closed geodesics and periodic billiard orbits on Q and discuss their relation with the elliptic KdV solutions and elliptic Calogero systemComment: 23 pages, Latex, 1 figure Postscrip

    Wave Solutions of Evolution Equations and Hamiltonian Flows on Nonlinear Subvarieties of Generalized Jacobians

    Full text link
    The algebraic-geometric approach is extended to study solutions of N-component systems associated with the energy dependent Schrodinger operators having potentials with poles in the spectral parameter, in connection with Hamiltonian flows on nonlinear subvariaties of Jacobi varieties. The systems under study include the shallow water equation and Dym type equation. The classes of solutions are described in terms of theta-functions and their singular limits by using new parameterizations. A qualitative description of real valued solutions is provided

    Resistência a Phytophthora sojae em genótipos de soja da Embrapa em 2023.

    Get PDF
    Apresenta resultados de avaliações de resistência completa e parcial à podridão radicular de fitóftora de genótipos de soja, realizadas na Embrapa Trigo em 2023
    corecore