24 research outputs found

    Effects of an 8-week strength training intervention on tibiofemoral joint loading during landing: a cohort study.

    No full text
    Objectives: To use a musculoskeletal model of the lower limb to evaluate the effect of a strength training intervention on the muscle and joint contact forces experienced by untrained women during landing. Methods: Sixteen untrained women between 18 and 28 years participated in this cohort study, split equally between intervention and control groups. The intervention group trained for 8 weeks targeting improvements in posterior leg strength. The mechanics of bilateral and unilateral drop landings from a 30 cm platform were recorded preintervention and postintervention, as was the isometric strength of the lower limb during a hip extension test. The internal muscle and joint contact forces were calculated using FreeBody, a musculoskeletal model. Results: The strength of the intervention group increased by an average of 35% (P<0.05; pre: 133±36 n, post: 180±39 n), whereas the control group showed no change (pre: 152±36 n, post: 157±46 n). There were only small changes from pre-test to post-test in the kinematics and ground reaction forces during landing that were not statistically significant. Both groups exhibited a post-test increase in gluteal muscle force during landing and a lateral to medial shift in tibiofemoral joint loading in both landings. However, the magnitude of the increase in gluteal force and lateral to medial shift was significantly greater in the intervention group. Conclusion: Strength training can promote a lateral to medial shift in tibiofemoral force (mediated by an increase in gluteal force) that is consistent with a reduction in valgus loading. This in turn could help prevent injuries that are due to abnormal knee loading such as anterior cruciate ligament ruptures, patellar dislocation and patellofemoral pain

    On the Role of the Patella, ACL and Joint Contact Forces in the Extension of the Knee

    Get PDF
    Traditional descriptions of the knee suggest that the function of the patella is to facilitate knee extension by increasing the moment arm of the quadriceps muscles. Through modelling and evidence from the literature it is shown in this paper that the presence of the patella makes the ability of the quadriceps to rotate the thigh greater than their ability to rotate the tibia. Furthermore, this difference increases as the knee is flexed, thus demonstrating a pattern that is consistent with many human movements. This paper also shows that the anterior cruciate ligament plays a previously unheralded role in extending the shank and that translation at the tibiofemoral and patellofemoral joints is important in improving the capacity for thigh rotation when the knee is flexed. This study provides new insights as to how the structure of the knee is adapted to its purpose and illustrates how the functional anatomy of the knee contributes to its extension function

    A Patient-Specific Foot Model for the Estimate of Ankle Joint Forces in Patients with Juvenile Idiopathic Arthritis

    Get PDF
    Juvenile idiopathic arthritis (JIA) is the leading cause of childhood disability from a musculoskeletal disorder. It generally affects large joints such as the knee and the ankle, often causing structural damage. Different factors contribute to the damage onset, including altered joint loading and other mechanical factors, associated with pain and inflammation. The prediction of patients' joint loading can hence be a valuable tool in understanding the disease mechanisms involved in structural damage progression. A number of lower-limb musculoskeletal models have been proposed to analyse the hip and knee joints, but juvenile models of the foot are still lacking. This paper presents a modelling pipeline that allows the creation of juvenile patient-specific models starting from lower limb kinematics and foot and ankle MRI data. This pipeline has been applied to data from three children with JIA and the importance of patient-specific parameters and modelling assumptions has been tested in a sensitivity analysis focused on the variation of the joint reaction forces. This analysis highlighted the criticality of patient-specific definition of the ankle joint axes and location of the Achilles tendon insertions. Patient-specific detection of the Tibialis Anterior, Tibialis Posterior, and Peroneus Longus origins and insertions were also shown to be important

    The development of a segment-based musculoskeletal model of the lower limb: introducing FreeBody.

    No full text
    Traditional approaches to the biomechanical analysis of movement are joint-based; that is the mechanics of the body are described in terms of the forces and moments acting at the joints, and that muscular forces are considered to create moments about the joints. We have recently shown that segment-based approaches, where the mechanics of the body are described by considering the effect of the muscle, ligament and joint contact forces on the segments themselves, can also prove insightful. We have also previously described a simultaneous, optimization-based, musculoskeletal model of the lower limb. However, this prior model incorporates both joint- and segment-based assumptions. The purpose of this study was therefore to develop an entirely segment-based model of the lower limb and to compare its performance to our previous work. The segment-based model was used to estimate the muscle forces found during vertical jumping, which were in turn compared with the muscular activations that have been found in vertical jumping, by using a Geers metric to quantify the magnitude and phase errors. The segment-based model was shown to have a similar ability to estimate muscle forces as a model based upon our previous work. In the future, we will evaluate the ability of the segment-based model to be used to provide results with clinical relevance, and compare its performance to joint-based approaches. The segment-based model described in this article is publicly available as a GUI-based Matlab® application and in the original source code (at www.msksoftware.org.uk)

    Lighter and heavier initial loads yield similar gains in strength when employing a progressive wave loading scheme

    Get PDF
    Progressive wave loading strategies are common within strength and conditioning practice. The purpose of this study was to contribute to the understanding of this strategy by evaluating the effectiveness of 2 wave loading bench press training programmes that differed only in the initial load that was used to start the first wave. Thirty-four resistance-trained men were divided into 2 groups and performed 2 training sessions each week for 20 weeks. One session consisted of 6 sets of 2 repetitions, while the other consisted of 5 sets of 5 repetitions. The load used was incremented by 2.5% of one repetition maximum (1RM) each week until the subject could no longer complete the programmed repetitions. At this point, the load was decreased, and then started to ascend again. The initial loads for the 2 sessions were 87.5% and 80% 1RM respectively for the heavier group, and for the lighter group were 82.5% and 75% 1RM. The subjects experienced a significant improvement in their bench press performance (higher load group: pre test = 106.5 kg ± 14.6, post test = 112.2 kg ± 12.4, p ≤ 0.05; lower load group: pre test = 105.7 kg ± 14.1, post test = 114.3 kg ± 11.0, p ≤ 0.05), but there was no difference in the magnitude of the improvment between the two groups. These results tend to support the common practical recommendation to start with a lighter load when employing a progressive wave loading strategy, as such a strategy yields similar improvements in performance with a lower level of exertion in training

    In Vivo Knee Contact Force Prediction Using Patient-Specific Musculoskeletal Geometry in a Segment-Based Computational Model.

    No full text
    Segment-based musculoskeletal models allow the prediction of muscle, ligament and joint forces without making assumptions regarding joint degrees of freedom. The dataset published for the "Grand Challenge Competition to Predict In Vivo Knee Loads" provides directly-measured tibiofemoral contact forces for activities of daily living. For the "Sixth Grand Challenge Competition to Predict In Vivo Knee Loads", blinded results for "smooth" and "bouncy" gait trials were predicted using a customised patient-specific musculoskeletal model. For an unblinded comparison the following modifications were made to improve the predictions: • further customisations, including modifications to the knee centre of rotation; • reductions to the maximum allowable muscle forces to represent known loss of strength in knee arthroplasty patients; and • a kinematic constraint to the hip joint to address the sensitivity of the segment-based approach to motion tracking artefact. For validation, the improved model was applied to normal gait, squat and sit-to-stand for three subjects. Comparisons of the predictions with measured contact forces showed that segment-based musculoskeletal models using patient-specific input data can estimate tibiofemoral contact forces with root mean square errors (RMSEs) of 0.48-0.65 times body weight (BW) for normal gait trials. Tibiofemoral contact force patterns were estimated with an average coefficient of determination of 0.81 and with RMSEs of 0.46-1.01 times BW for squatting and 0.70-0.99 times BW for sit-to-stand tasks. This is comparable to the best validations in the literature using alternative models
    corecore