3,927 research outputs found

    Eliminating artefacts in polarimetric images using deep learning

    Get PDF
    Polarization measurements done using Imaging Polarimeters such as the Robotic Polarimeter are very sensitive to the presence of artefacts in images. Artefacts can range from internal reflections in a telescope to satellite trails that could contaminate an area of interest in the image. With the advent of wide-field polarimetry surveys, it is imperative to develop methods that automatically flag artefacts in images. In this paper, we implement a Convolutional Neural Network to identify the most dominant artefacts in the images. We find that our model can successfully classify sources with 98 per cent true positive and 97 per cent true negative rates. Such models, combined with transfer learning, will give us a running start in artefact elimination for near-future surveys like WALOP

    A single amino acid exchange transfers VP16-induced positive control from the Oct-1 to the Oct-2 homeo domain

    Get PDF
    The selective association of the herpesvirus trans-activator VP16 with the human Oct-1 homeo domain is a model for differential positive transcriptional control by homeo domains. VP16 discriminates between the closely related homeo domains of Oct-1 and Oct-2 by distinguishing among their seven amino-acid differences; these differences lie on the surface that is thought to be accessible when the homeo domain is bound to DNA. Only two of these seven differences are recognized by VP16, one in each of the first two alpha-helices of the tri-alpha-helical homeo domain. The major determinant for selective association with VP16 in vitro and VP16-induced positive control in vivo is a single glutamic acid residue at position 22 in the first alpha-helix of the Oct-1 homeo domain, but the acidic properties of this residue are not critical for association with VP16 in vitro or in vivo, because it can be replaced by glutamine with little or no deleterious effect. Mere replacement of the single corresponding alanine residue in the Oct-2 homeo domain with the key glutamic acid residue is sufficient to confer on the Oct-2 homeo domain the ability to associate with VP16 in vitro and respond to VP16-induced positive control in vivo. Thus, the specificity of homeo domain positive control can be conferred by a single amino acid difference

    Cryogenic microstripline-on-Kapton microwave interconnects

    Get PDF
    Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and cross-talk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.Comment: 3 pages, 3 figures, submitted to The Review of Scientific Instrument

    Coherent Arrays for Astronomy and Remote Sensing - Final Report

    Get PDF
    The Coherent Arrays for Astronomy and Remote Sensing Program sponsored by the Keck Institute for Space Studies has had a profound impact on astronomy at Caltech – both at JPL and on campus – and worldwide. It provided funds for the establishment of a world-class coherent detector laboratory – the Cahill Radio Astronomy Laboratory (CRAL) that, in collaboration with JPL and Northrop Grumman, now sets the global standard in coherent detectors in the centimeter-millimeter wavelength range – as shown by three key highlights: (i) NRAO’s recent selection of CRAL MMIC detectors over its own in house MIC detectors for the upgrade of the ALMA Band 2 receivers; (ii) NSF’s funding of a 16-element 85 GHz – 115 GHz focal plane array (ARGUS) for the Green Bank Telescope (1M);and(iii)NSF’sfundingofthe26GHz–34GHzCOMappingArrayPathfinder(COMAP1M); and (iii) NSF’s funding of the 26 GHz – 34 GHz CO Mapping Array Pathfinder (COMAP 2.5M). The funding of COMAP was particularly important since it demonstrated in the wake of the NSF decline of the CARMA proposal (2014) that the US astronomy community and the NSF were prepared to fund large new projects at the Owens Valley Radio Observatory (OVRO), enabling the OVRO to re-establish itself as a world-class radio observatory and convincing Caltech to continue its funding of the OVRO. It is no exaggeration that the KISS coherent detector program played THE major role in saving the OVRO. The position of the CRAL and of the OVRO is now very strong and the staff, decimated by the CARMA decline, is being rebuilt and is once more at a robust strength. Two new multi-national partnerships – the Radio Astronomy Partnership (RAP) and the MMIC Partnership (MMICP) have been established at Caltech as a direct result of the KISS investment in creating the CRAL, and these are providing independent funding to OVRO and the CRAL. There are now eight agency-funded programs at the OVRO and we are optimistic about the prospects of having two more programs funded in the next year, in view of important science breakthroughs at OVRO over the last 6 months

    Differential positive control by Oct-1 and Oct-2: activation of a transcriptionally silent motif through Oct-1 and VP16 corecruitment

    Get PDF
    Transcriptional regulation by the ubiquitous human POU homeo domain protein Oct-1 and the related B-cell protein Oct-2 is a model for understanding how proteins that recognize the same regulatory site elicit different programs of gene transcription. Here, we describe a mechanism for differential promoter activation whereby only Oct-1, through selective corecruitment with the herpesvirus trans-activator VP16, acquires the ability to stimulate transcription from a TAATGARAT-containing site that responds to neither Oct-1 nor Oct-2 alone. To measure differential in vivo activation by human Oct-1 and Oct-2 in response to VP16, we have developed a transient assay in murine NIH-3T3 cells. Surprisingly, murine Oct-1 associates with VP16 much less effectively than its human counterpart, most likely because the murine Oct-1 homeo domain differs at four positions from the human Oct-1 homeo domain. The murine cell transient assay shows directly that human Oct-1, but not human Oct-2, can respond to VP16 in vivo. The Oct-1 DNA-binding POU domain is sufficient and the Oct-1 homeo domain is critical for this response, because an Oct-1 POU domain containing the Oct-2 homeo domain fails to respond to the VP16-induced positive control of transcription. Thus, by selective homeo domain interaction and corecruitment to an otherwise silent regulatory element, VP16 expands the repertoire of sites responsive to Oct-1 without affecting the activity of its close relative Oct-2

    First Season QUIET Observations: Measurements of Cosmic Microwave Background Polarization Power Spectra at 43 GHz in the Multipole Range 25 ≤ ℓ ≤ 475

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hr of data were collected, first with the 19 element 43 GHz array (3458 hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ≈1000 deg^2. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69 μK√s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range ℓ = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35^(+1.06)_(–0.87). The combination of a new time-stream "double-demodulation" technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1

    Improving the evidence base of Markov models used to estimate the costs of scaling up antiretroviral programmes in resource-limited settings

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite concerns about affordability and sustainability, many models of the lifetime costs of antiretroviral therapy (ART) used in resource limited settings are based on data from small research cohorts, together with pragmatic assumptions about life-expectancy. This paper revisits these modelling assumptions in order to provide input to future attempts to model the lifetime costs and the costs of scaling up ART.</p> <p>Methods</p> <p>We analysed the determinants of costs and outcomes in patients receiving ART in line with standard World Health Organization (WHO) guidelines for resource poor settings in a private sector managed ART programme in South Africa. The cohort included over 5,000 patients with up to 4 years (median 19 months) on ART. Generalized linear and Cox proportional hazards regression models were used to establish cost and outcome determinants respectively.</p> <p>Results</p> <p>The key variables associated with changes in mean monthly costs were: being on the second line regimen; receiving ART from 4 months prior to 4 months post treatment initiation; having a recent or current CD4 count <50 cells/ÂľL or 50-199 cells/Âľl; having mean ART adherence <75% as determined by monthly pharmacy refill data; and having a current or recent viral load >100,000 copies/mL. In terms of the likelihood of dying, the key variables were: baseline CD4 count<50 cells/Âľl (particularly during the first 4 months on treatment); current CD4 count <50 cells/Âľl and 50-199 cells/Âľl (particularly during later periods on treatment); and being on the second line regimen. Being poorly adherent and having an unsuppressed viral load was also associated with a higher likelihood of dying.</p> <p>Conclusions</p> <p>While there are many unknowns associated with modelling the resources needed to scale-up ART, our analysis has suggested a number of key variables which can be used to improve the state of the art of modelling ART. While the magnitude of the effects associated with these variables would be likely to differ in other settings, the variables influencing costs and survival are likely to be generalizable. This is of direct relevance to those concerned about assessing the long-term costs and sustainability of expanded access to ART.</p

    Perceptions of French and Creole Among First-Generation Adult Haitian English Language Learners

    Get PDF
    Context: Due to a unique combination of factors, outdoor athletes in the Southeastern United States are at high risk of lightning deaths and injuries. Lightning detection methods are available to minimize lightning strike victims. Objective: Becoming aware of the risk factors that predispose athletes to lightning strikes and determining the most reliable detection method against hazardous weather will enable Certified Athletic Trainers to develop protocols that protect athletes from injury. Data Sources: A comprehensive literature review of Medline and Pubmed using key words: lightning, lightning risk factors, lightning safety, lightning detection, and athletic trainers and lightning was completed. Data Synthesis: Factors predisposing athletes to lighting death or injury include: time of year, time of day, the athlete’s age, geographical location, physical location, sex, perspiration level, and lack of education and preparedness by athletes and staff. Although handheld lightning detectors have become widely accessible to detect lightning strikes, their performance has not been independently or objectively confirmed. There is evidence that these detectors inaccurately detect strike locations by recording false strikes and not recording actual strikes. Conclusions: Lightning education and preparation are two factors that can be controlled. Measures need to be taken by Certified Athletic Trainers to ensure the safety of athletes during outdoor athletics. It is critical for athletic trainers and supervising staff members to become fully aware of the risks of lightning strikes in order to most effectively protect everyone under their supervision. Even though lightning detectors have been manufactured in an attempt to minimize death and injuries due to lightning strikes, none of the detectors have been proven to be 100% effective. Educating coaches, athletes, and parents on the risks of lightning and the detection methods available, while implementing an emergency action plan for lightning safety, is crucial to ensure the well being of the student-athlete population

    The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    Get PDF
    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ~480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps

    Parallel Recursive State Compression for Free

    Get PDF
    This paper focuses on reducing memory usage in enumerative model checking, while maintaining the multi-core scalability obtained in earlier work. We present a tree-based multi-core compression method, which works by leveraging sharing among sub-vectors of state vectors. An algorithmic analysis of both worst-case and optimal compression ratios shows the potential to compress even large states to a small constant on average (8 bytes). Our experiments demonstrate that this holds up in practice: the median compression ratio of 279 measured experiments is within 17% of the optimum for tree compression, and five times better than the median compression ratio of SPIN's COLLAPSE compression. Our algorithms are implemented in the LTSmin tool, and our experiments show that for model checking, multi-core tree compression pays its own way: it comes virtually without overhead compared to the fastest hash table-based methods.Comment: 19 page
    • …
    corecore