3,741 research outputs found

    Fast Hands-free Writing by Gaze Direction

    Full text link
    We describe a method for text entry based on inverse arithmetic coding that relies on gaze direction and which is faster and more accurate than using an on-screen keyboard. These benefits are derived from two innovations: the writing task is matched to the capabilities of the eye, and a language model is used to make predictable words and phrases easier to write.Comment: 3 pages. Final versio

    First Season QUIET Observations: Measurements of Cosmic Microwave Background Polarization Power Spectra at 43 GHz in the Multipole Range 25 ≤ ℓ ≤ 475

    Get PDF
    The Q/U Imaging ExperimenT (QUIET) employs coherent receivers at 43 GHz and 94 GHz, operating on the Chajnantor plateau in the Atacama Desert in Chile, to measure the anisotropy in the polarization of the cosmic microwave background (CMB). QUIET primarily targets the B modes from primordial gravitational waves. The combination of these frequencies gives sensitivity to foreground contributions from diffuse Galactic synchrotron radiation. Between 2008 October and 2010 December, over 10,000 hr of data were collected, first with the 19 element 43 GHz array (3458 hr) and then with the 90 element 94 GHz array. Each array observes the same four fields, selected for low foregrounds, together covering ≈1000 deg^2. This paper reports initial results from the 43 GHz receiver, which has an array sensitivity to CMB fluctuations of 69 μK√s. The data were extensively studied with a large suite of null tests before the power spectra, determined with two independent pipelines, were examined. Analysis choices, including data selection, were modified until the null tests passed. Cross-correlating maps with different telescope pointings is used to eliminate a bias. This paper reports the EE, BB, and EB power spectra in the multipole range ℓ = 25-475. With the exception of the lowest multipole bin for one of the fields, where a polarized foreground, consistent with Galactic synchrotron radiation, is detected with 3σ significance, the E-mode spectrum is consistent with the ΛCDM model, confirming the only previous detection of the first acoustic peak. The B-mode spectrum is consistent with zero, leading to a measurement of the tensor-to-scalar ratio of r = 0.35^(+1.06)_(–0.87). The combination of a new time-stream "double-demodulation" technique, side-fed Dragonian optics, natural sky rotation, and frequent boresight rotation leads to the lowest level of systematic contamination in the B-mode power so far reported, below the level of r = 0.1

    A Physical Model for Drain Noise in High Electron Mobility Transistors: Theory and Experiment

    Full text link
    We report the on-wafer characterization of SS-parameters and microwave noise temperature (T50T_{50}) of discrete metamorphic GaAs high electron mobility transistors (HEMTs) at 40 K and 300 K over a range of drain-source voltages (VDSV_{DS}). From these data, we extract a small-signal model and the drain noise temperature (TdT_{d}) at each bias and temperature. We find that TdT_d follows a superlinear trend with VDSV_{DS} at both temperatures. These trends are interpreted by attributing drain noise to a thermal component associated with the channel resistance and a component due to real-space transfer (RST) of electrons from the channel to the barrier [1]. In the present devices at the minimum T50T_{50}, RST contributes ∼10\sim 10% of the drain noise at cryogenic temperatures. At 300 K, the contribution increases to over ∼60\sim 60% of the total drain noise. This finding indicates that improving the confinement of electrons in the quantum well could enable room-temperature receivers with up to ∼50\sim 50% lower noise temperatures by decreasing the contribution of RST to drain noise.Comment: 6 pages, 6 figure

    Coastal response to late-stage transgression and sea-level highstand

    Get PDF
    Coastal morphologic features associated with past shoreline transgressions and sea-level highstands can provide insight into the rates and processes associated with coastal response to the modern global rise in sea level. Along the eastern and southern Brazilian coasts of South America, 6000 years of sea-level fall have preserved late-stage transgressive and sea-level highstand features 1-4 m above present mean sea level and several kilometers landward of modern shorelines. GPS with real-time kinematics data, ground-penetrating radar, stratigraphy, and radiocarbon dating within a 2-3-km-wide river-associated strandplain in central Santa Catarina (southern Brazil) uncovered a diverse set of late-stage transgressive and highstand deposits. Here, the highstand took the forms of (1) an exposed bedrock coast in areas of high wave energy and low sediment supply; (2) a 3.8-m-high transgressive barrier ridge where landward barrier migration was prohibited by the presence of shallow bedrock; and (3) a complete barrier-island complex containing a 5.2-m-high barrier ridge, wash-over deposits, a paleo-inlet, and a backbarrier lowland, formed in a protected cove with ample sediment supply from small local streams and the erosion of upland sediments. Similar signatures of the mid-Holocene highstand can be traced across all coastal Brazilian states. This study presents the first complete compilation of the diversity of these sedimentary sequences. They are broadly classified here as exposed bedrock coasts (type A), back barrier deposits (type B), transgressive barrier ridges (type C), and barrier-island complexes (type D), according to localized conditions of upland migration potential, wave exposure, and sediment supply. These Brazilian systems present a paradigm for understanding future coastal response to climate change and accelerated sea-level rise: the recognition of a minimum threshold sea-level-rise rate of similar to 2 mm yr(-1) above which transgression proceeded too rapidly for the formation of these stable accretionary shoreline features demonstrates the nonlinearity of coastal response to sea-level change, and the site specificity of conditions associated with the formation of each highstand deposit type, even within a single small embayment, demonstrates the non-uniformity of that response

    Elementary amenable subgroups of R. Thompson's group F

    Full text link
    The subgroup structure of Thompson's group F is not yet fully understood. The group F is a subgroup of the group PL(I) of orientation preserving, piecewise linear self homeomorphisms of the unit interval and this larger group thus also has a poorly understood subgroup structure. It is reasonable to guess that F is the "only" subgroup of PL(I) that is not elementary amenable. In this paper, we explore the complexity of the elementary amenable subgroups of F in an attempt to understand the boundary between the elementary amenable subgroups and the non-elementary amenable. We construct an example of an elementary amenable subgroup up to class (height) omega squared, where omega is the first infinite ordinal.Comment: 20 page

    The Q/U Imaging Experiment: Polarization Measurements of Radio Sources at 43 and 95 GHz

    Get PDF
    We present polarization measurements of extragalactic radio sources observed during the cosmic microwave background polarization survey of the Q/U Imaging Experiment (QUIET), operating at 43 GHz (Q-band) and 95 GHz (W-band). We examine sources selected at 20 GHz from the public, >40 mJy catalog of the Australia Telescope (AT20G) survey. There are ~480 such sources within QUIET's four low-foreground survey patches, including the nearby radio galaxies Centaurus A and Pictor A. The median error on our polarized flux density measurements is 30–40 mJy per Stokes parameter. At signal-to-noise ratio > 3 significance, we detect linear polarization for seven sources in Q-band and six in W-band; only 1.3 ± 1.1 detections per frequency band are expected by chance. For sources without a detection of polarized emission, we find that half of the sources have polarization amplitudes below 90 mJy (Q-band) and 106 mJy (W-band), at 95% confidence. Finally, we compare our polarization measurements to intensity and polarization measurements of the same sources from the literature. For the four sources with WMAP and Planck intensity measurements >1 Jy, the polarization fractions are above 1% in both QUIET bands. At high significance, we compute polarization fractions as much as 10%–20% for some sources, but the effects of source variability may cut that level in half for contemporaneous comparisons. Our results indicate that simple models—ones that scale a fixed polarization fraction with frequency—are inadequate to model the behavior of these sources and their contributions to polarization maps

    Mixing Time Scale Models for Multiple Mapping Conditioning with Two Reference Variables

    Get PDF
    A novel multiple mapping conditioning (MMC) approach has been developed for the modelling of turbulent premixed flames including mixture inhomogeneities due to mixture stratification or mixing with the cold surroundings. MMC requires conditioning of a mixing operator on characteristic quantities (reference variables) to ensure localness of mixing in composition space. Previous MMC used the LES-filtered reaction progress variable as reference field. Here, the reference variable space is extended by adding the LES-filtered mixture fraction effectively leading to a double conditioning of the mixing operator. The model is used to predict a turbulent stratified flame and is validated by comparison with experimental data. The introduction of the second reference variable also requires modification of the mixing time scale. Two different mixing time scale models are compared in this work. A novel anisotropic model for stratified combustion leads to somewhat higher levels of fluctuations for the passive scalar when compared with the original model but differences remain small within the flame front. The results show that both models predict flame position and flame structure with good accuracy

    The Q/U Imaging Experiment: Polarization Measurements of the Galactic Plane at 43 and 95 GHz

    Get PDF
    We present polarization observations of two Galactic plane fields centered on Galactic coordinates (l, b) = (0°, 0°) and (329°, 0°) at both Q (43 GHz) and W bands (95 GHz), covering between 301 and 539 square degrees depending on frequency and field. These measurements were made with the QUIET instrument between 2008 October and 2010 December, and include a total of 1263 hr of observations. The resulting maps represent the deepest large-area Galactic polarization observations published to date at the relevant frequencies with instrumental rms noise varying between 1.8 and 2.8 μK deg, 2.3–6 times deeper than corresponding WMAP and Planck maps. The angular resolution is 27!3 and 12!8 FWHM at Q and W bands, respectively. We find excellent agreement between the QUIET and WMAP maps over the entire fields, and no compelling evidence for significant residual instrumental systematic errors in either experiment, whereas the Planck 44 GHz map deviates from these in a manner consistent with reported systematic uncertainties for this channel. We combine QUIET and WMAP data to compute inverse-variance-weighted average maps, effectively retaining small angular scales from QUIET and large angular scales from WMAP. From these combined maps, we derive constraints on several important astrophysical quantities, including a robust detection of polarized synchrotron spectral index steepening of ≈0.2 off the plane, as well as the Faraday rotation measure toward the Galactic center (RM = −4000 ± 200 rad m^(−2)), all of which are consistent with previously published results. Both the raw QUIET and the co-added QUIET+WMAP maps are made publicly available together with all necessary ancillary information
    • …
    corecore