9 research outputs found

    Vapour transfer in unsaturated compacted bentonite

    No full text
    Results of an experimental and theoretical investigation of heat and moisture movement in unsaturated MX-80 bentonite are presented. A thermo-hydraulic cell that allows measurement of transient temperatures and facilitates the determination of pseudo-transients of moisture content, dry density and chemical composition has been used to perform thermal gradient tests. Results of a number of tests are presented, and observation of the accumulation of chloride ions near the hot end clearly indicates that there is a cycle of vapour and liquid moisture movement, with vapour moving from hotter to cooler regions, condensing, and then moving as liquid towards the hotter regions. An empirical method is applied to calculate approximate vapour fluxes using measured variations in chloride ion concentration and moisture content with time. The vapour fluxes calculated empirically are found to be lower than those determined by some existing vapour flow theories. Subsequently, an existing vapour flow model is modified to represent the observed vapour fluxes more closely

    Non-isothermal moisture movement in unsaturated kaolin: An experimental and theoretical investigation

    No full text
    Non isothermal moisture movement in unsaturated kaolin is investigated in a series of experiments. Vapour transfer is then empirically quantified, and its theoretical representation considered. A thermo-hydraulic cell is used to apply thermal and hydraulic gradients to confined specimens in a number of thermal gradient, thermal-hydraulic gradient, and isothermal-hydraulic tests. Transient measurements of the thermal regime are made, and end of test measurement of moisture content, porosity, and chemical composition from a number of identical tests run for different durations allow pseudo transient variations of these parameters to be established. In each of the tests, where a thermal gradient is applied, the accumulation of chloride ions in the hottest regions indicates a cyclic movement of vapour and liquid moisture. Estimated vapour fluxes are determined by consideration of overall moisture and conservative ion movements in the sealed thermal gradient tests. These vapour fluxes are then compared to those predicted by an established vapour flow theory, and a modification to this theory is proposed based on a variable enhancement factor

    Non-isothermal moisture movement in unsaturated kaolin: An experimental and theoretical investigation

    No full text
    Non isothermal moisture movement in unsaturated kaolin is investigated in a series of experiments. Vapour transfer is then empirically quantified, and its theoretical representation considered. A thermo-hydraulic cell is used to apply thermal and hydraulic gradients to confined specimens in a number of thermal gradient, thermal-hydraulic gradient, and isothermal-hydraulic tests. Transient measurements of the thermal regime are made, and end of test measurement of moisture content, porosity, and chemical composition from a number of identical tests run for different durations allow pseudo transient variations of these parameters to be established. In each of the tests, where a thermal gradient is applied, the accumulation of chloride ions in the hottest regions indicates a cyclic movement of vapour and liquid moisture. Estimated vapour fluxes are determined by consideration of overall moisture and conservative ion movements in the sealed thermal gradient tests. These vapour fluxes are then compared to those predicted by an established vapour flow theory, and a modification to this theory is proposed based on a variable enhancement factor

    Physicochemical composition of wastes and co-located environmental designations at legacy mine sites in the south west of England and Wales: Implications for their resource potential

    No full text
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordThis work examines the potential for resource recovery and/or remediation of metalliferous mine wastes in the south west of England and Wales. It does this through an assessment of the physicochemical composition of several key metalliferous legacy mine waste piles and an analysis of their co-location with cultural, geological and ecological designations. Mine waste samples were taken from 14 different sites and analysed for metal content, mineralogy, paste pH, particle size distribution, total organic carbon and total inorganic carbon. The majority of sites contain relatively high concentrations (in some cases up to several % by mass) of metals and metalloids, including Cu, Zn, As, Pb, Ag and Sn, many of which exceed ecological and/or human health risk guideline concentrations. However, the economic value of metals in the waste could be used to offset rehabilitation costs. Spatial analysis of all metalliferous mine sites in the south west of England and Wales found that around 70% are co-located with at least one cultural, geological and ecological designation. All 14 sites investigated are co-located with designations related to their mining activities, either due to their historical significance, rare species assemblages or geological characteristics. This demonstrates the need to consider the cultural and environmental impacts of rehabilitation and/or resource recovery on such sites. Further work is required to identify appropriate non-invasive methodologies to allow sites to be rehabilitated at minimal cost and disturbance.Natural Environment Research Council (NERC

    Synthetic Water Repellent Soils for Slope Stabilization

    No full text

    Appendix_1 – Supplemental material for Altered chemical evolution in landfill leachate post implementation of biodegradable waste diversion

    No full text
    <p>Supplemental material, Appendix_1 for Altered chemical evolution in landfill leachate post implementation of biodegradable waste diversion by SJ Warwick, P Durany-Fernandez, DJ Sapsford, PJ Cleall and MJ Harbottle in Waste Management & Research</p

    Emerging Thermal Issues in Geotechnical Engineering

    No full text
    corecore