257 research outputs found
Site and Strain-Specific Variation in Gut Microbiota Profiles and Metabolism in Experimental Mice
The gastrointestinal tract microbiota (GTM) of mammals is a complex microbial consortium, the composition and activities of which influences mucosal development, immunity, nutrition and drug metabolism. It remains unclear whether the composition of the dominant GTM is conserved within animals of the same strain and whether stable GTMs are selected for by host-specific factors or dictated by environmental variables.The GTM composition of six highly inbred, genetically distinct strains of mouse (C3H, C57, GFEC, CD1, CBA nu/nu and SCID) was profiled using eubacterial -specific PCR-DGGE and quantitative PCR of feces. Animals exhibited strain-specific fecal eubacterial profiles that were highly stable (c. >95% concordance over 26 months for C57). Analyses of mice that had been relocated before and after maturity indicated marked, reproducible changes in fecal consortia and that occurred only in young animals. Implantation of a female BDF1 mouse with genetically distinct (C57 and Agoutie) embryos produced highly similar GTM profiles (c. 95% concordance) between mother and offspring, regardless of offspring strain, which was also reflected in urinary metabolite profiles. Marked institution-specific GTM profiles were apparent in C3H mice raised in two different research institutions.Strain-specific data were suggestive of genetic determination of the composition and activities of intestinal symbiotic consortia. However, relocation studies and uterine implantation demonstrated the dominance of environmental influences on the GTM. This was manifested in large variations between isogenic adult mice reared in different research institutions
A Heuristic Solution of the Identifiability Problem of the Age-Period-Cohort Analysis of Cancer Occurrence: Lung Cancer Example
Background: The AgeβPeriodβCohort (APC) analysis is aimed at estimating the following effects on disease incidence: (i) the age of the subject at the time of disease diagnosis; (ii) the time period, when the disease occurred; and (iii) the date of birth of the subject. These effects can help in evaluating the biological events leading to the disease, in estimating the influence of distinct risk factors on disease occurrence, and in the development of new strategies for disease prevention and treatment. Methodology/Principal Findings: We developed a novel approach for estimating the APC effects on disease incidence rates in the frame of the Log-Linear Age-Period-Cohort (LLAPC) model. Since the APC effects are linearly interdependent and cannot be uniquely estimated, solving this identifiability problem requires setting four redundant parameters within a set of unknown parameters. By setting three parameters (one of the time-period and the birth-cohort effects and the corresponding age effect) to zero, we reduced this problem to the problem of determining one redundant parameter and, used as such, the effect of the time-period adjacent to the anchored time period. By varying this identification parameter, a family of estimates of the APC effects can be obtained. Using a heuristic assumption that the differences between the adjacent birth-cohort effects are small, we developed a numerical method for determining the optimal value of the identification parameter, by which a unique set of all APC effects is determined and the identifiability problem is solved
Serum estradiol/progesterone ratio on day of embryo transfer may predict reproductive outcome following controlled ovarian hyperstimulation and in vitro fertilization
BACKGROUND: To determine whether estradiol-to-progesterone (E(2)/P) ratios at the time of embryo transfer (ET) have an effect on implantation and pregnancy in IVF cycles. METHODS: 239 women consecutively treated by IVF or ICSI were retrospectively analyzed and early luteal serum E(2 )and P were measured on the day of ET. Transfer occurred after a variable in vitro culture period ranging from 4β7 days after ovulation induction (OI). Following ET, serum E(2)/P ratios were calculated for clinical pregnancies, preclinical abortions and non-coneption cycles. RESULTS: Receiver-operator curve analysis demonstrated that the E(2)/P ratio could differentiate between clinical pregnancies and non-pregnant cycles (area under the curve on OI +4 days = 0.70; 95% CI = 0.60β0.80; p = 0.003, on OI +5 days = 0.76; 95% CI = 0.64β0.88; p = 0.001, OI +7 days = 0.85; 95% CI = 0.75β0.96; p < 0.0001). CONCLUSION: These retrospective data may hold prognostic value regarding endometrial receptivity as reflected by E(2)/P measurements and may help improve IVF treatment outcome. Further prospective studies should be undertaken to confirm these obersveration
Simple methodology for the quantitative analysis of fatty acids in human red blood cells
In the last years, there has been an increasing
interest in evaluating possible relations between fatty acid
(FA) patterns and the risk for chronic diseases. Due to the
long life span (120 days) of red blood cells (RBCs), their
FA profile reflects a longer term dietary intake and was
recently suggested to be used as an appropriate biomarker
to investigate correlations between FA metabolism and diseases.
Therefore, the aim of this work was to develop and
validate a simple and fast methodology for the quantification
of a broad range of FAs in RBCs using gas chromatography
with flame ionization detector, as a more common
and affordable equipment suitable for biomedical and
nutritional studies including a large number of samples. For
this purpose, different sample preparation protocols were
tested and compared, including a classic two-step method
(Folch method) with modifications and different one-step methods, in which lipid extraction and derivatization were
performed simultaneously. For the one-step methods, different
methylation periods and the inclusion of a saponification
reaction were evaluated. Differences in absolute FA
concentrations were observed among the tested methods,
in particular for some metabolically relevant FAs such as
trans elaidic acid and eicosapentaenoic acid. The one-step
method with saponification and 60 min of methylation time
was selected since it allowed the identification of a higher
number of FAs, and was further submitted to in-house validation.
The proposed methodology provides a simple, fast
and accurate tool to quantitatively analyse FAs in human
RBCs, useful for clinical and nutritional studies.This work received financial support from the
European Union (FEDER funds through COMPETE) and National
Funds (FCT, Fundação para a CiΓͺncia e Tecnologia) through project
PTDC/SAU-ENB/116929/2010 and EXPL/EMS-SIS/2215/2013.
ROR acknowledges PhD scholarship SFRH/BD/97658/2013 attributed
by FCT (Fundação para a CiΓͺncia e Tecnologia).info:eu-repo/semantics/publishedVersio
Cancer of the breast: 5-year survival in a tertiary hospital in Uganda
The objective was to investigate survival of breast cancer patients at Mulago Hospital. A retrospective study of the medical records of 297 breast cancer patients referred to the combined breast clinic housed in the radiotherapy department between 1996 and 2000 was done. The female/male ratio was 24β:β1. The age range was 22β85 years, with a median of 45 years and peak age group of 30β39 years. Twenty-three percent had early disease (stages 0βIIb) and 26% had metastatic disease. Poorly differentiated was the most common pathological grade (58%) followed by moderately differentiated (33%) and well-differentiated (9%) tumours. The commonest pathological type encountered was βnot otherwise specified' (76%). Of all patients, 75% had surgery, 76% had radiotherapy, 60% had hormonotherapy and 29% had chemotherapy. Thirty-six (12%) patients received all the four treatment modalities. The 5-year survival probabilities (KaplanβMeier) for early disease were 74 and 39% for advanced disease (P=0.001). The overall 5-year survival was 56%, which is lower than the rates in the South African blacks (64%) and North American whites (82β88%)
Palmitoylation Regulates Epidermal Homeostasis and Hair Follicle Differentiation
Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs). Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep) is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE) and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear Ξ²-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis
PCR-TTGE Analysis of 16S rRNA from Rainbow Trout (Oncorhynchus mykiss) Gut Microbiota Reveals Host-Specific Communities of Active Bacteria
This study assessed the relative contributions of host genetics and diet in shaping the gut microbiota of rainbow trout. Full sibling fish from four unrelated families, each consisting of individuals derived from the mating of one male and one female belonging to a breeding program, were fed diets containing either vegetable proteins or vegetable oils for two months in comparison to a control diet consisting of only fish protein and fish oil. Two parallel approaches were applied on the same samples: transcriptionally active bacterial populations were examined based on RNA analysis and were compared with bacterial populations obtained from DNA analysis. Comparison of temporal temperature gradient gel electrophoresis (TTGE) profiles from DNA and RNA showed important differences, indicating that active bacterial populations were better described by RNA analysis. Results showed that some bacterial groups were significantly (P<0.05) associated with specific families, indicating that microbiota composition may be influenced by the host. In addition, the effect of diet on microbiota composition was dependent on the trout family
Beat synchronization across the lifespan: intersection of development and musical experience
Rhythmic entrainment, or beat synchronization, provides an opportunity to understand how multiple systems operate together to integrate sensory-motor information. Also, synchronization is an essential component of musical performance that may be enhanced through musical training. Investigations of rhythmic entrainment have revealed a developmental trajectory across the lifespan, showing synchronization improves with age and musical experience. Here, we explore the development and maintenance of synchronization in childhood through older adulthood in a large cohort of participants (N = 145), and also ask how it may be altered by musical experience. We employed a uniform assessment of beat synchronization for all participants and compared performance developmentally and between individuals with and without musical experience. We show that the ability to consistently tap along to a beat improves with age into adulthood, yet in older adulthood tapping performance becomes more variable. Also, from childhood into young adulthood, individuals are able to tap increasingly close to the beat (i.e., asynchronies decline with age), however, this trend reverses from younger into older adulthood. There is a positive association between proportion of life spent playing music and tapping performance, which suggests a link between musical experience and auditory-motor integration. These results are broadly consistent with previous investigations into the development of beat synchronization across the lifespan, and thus complement existing studies and present new insights offered by a different, large cross-sectional sample
Mitochondrial Redox Metabolism in Trypanosomatids Is Independent of Tryparedoxin Activity
Tryparedoxins (TXNs) are oxidoreductases unique to trypanosomatids (including Leishmania and Trypanosoma parasites) that transfer reducing equivalents from trypanothione, the major thiol in these organisms, to sulfur-dependent peroxidases and other dithiol proteins. The existence of a TXN within the mitochondrion of trypanosomatids, capable of driving crucial redox pathways, is considered a requisite for normal parasite metabolism. Here this concept is shown not to apply to Leishmania. First, removal of the Leishmania infantum mitochondrial TXN (LiTXN2) by gene-targeting, had no significant effect on parasite survival, even in the context of an animal infection. Second, evidence is presented that no other TXN is capable of replacing LiTXN2. In fact, although a candidate substitute for LiTXN2 (LiTXN3) was found in the genome of L. infantum, this was shown in biochemical assays to be poorly reduced by trypanothione and to be unable to reduce sulfur-containing peroxidases. Definitive conclusion that LiTXN3 cannot directly reduce proteins located within inner mitochondrial compartments was provided by analysis of its subcellular localization and membrane topology, which revealed that LiTXN3 is a tail-anchored (TA) mitochondrial outer membrane protein presenting, as characteristic of TA proteins, its N-terminal end (containing the redox-active domain) exposed to the cytosol. This manuscript further proposes the separation of trypanosomatid TXN sequences into two classes and this is supported by phylogenetic analysis: i) class I, encoding active TXNs, and ii) class II, coding for TA proteins unlikely to function as TXNs. Trypanosoma possess only two TXNs, one belonging to class I (which is cytosolic) and the other to class II. Thus, as demonstrated for Leishmania, the mitochondrial redox metabolism in Trypanosoma may also be independent of TXN activity. The major implication of these findings is that mitochondrial functions previously thought to depend on the provision of electrons by a TXN enzyme must proceed differently
- β¦