311 research outputs found

    Auto-Tuned Voices: Why do we Distort the Pig Iron Tales

    Get PDF
    This interactive discussion will use the mis-telling of F. W.Taylor’s Pig Iron tales as a springboard for exploring the importance of management history and story- telling in our classrooms. Drawing from the research in story-telling pedagogy and thephilosophy of history we will further explore the criteria by which our historical talesshould be told

    Ethical Leadership: Not Everyone Responds Equally

    Get PDF
    Theoretical frameworks associated with ethical leadership have not fully considered the nature of the leader–follower exchange, and, in addition, few studies have considered the impact of follower individual differences in reactions to ethical leadership. Our research extends the customary social exchange perspective of transactional and relational resources by accounting for the ideological resources (i.e., value-oriented principles) that can also imbue the leader–subordinate relationship. Second, differences in equity sensitivity are hypothesized to moderate the influence of ethical leadership on employee attachment to the organization. We predicted that the impact of ethical leadership on organizational commitment, job satisfaction, and organizational identification is greater for individuals with a more benevolent orientation. In Study 1 (N = 223), equity sensitivity moderated the influence of ethical leadership on organizational commitment and organizational identification. In Study 2 (N = 244), an interactive effect was found for the outcomes of organizational commitment and job satisfaction. We consider the theoretical implications of how and why ethical leadership influences follower attitudes and beliefs

    Identification of Brush Species and Herbicide Effect Assessment in Southern Texas Using an Unoccupied Aerial System (UAS)

    Get PDF
    Cultivation and grazing since the mid-nineteenth century in Texas has caused dramatic changes in grassland vegetation. Among these changes is the encroachment of native and introduced brush species. The distribution and quantity of brush can affect livestock production and water holding capacity of soil. Still, at the same time, brush can improve carbon sequestration and enhance agritourism and real estate value. The accurate identification of brush species and their distribution over large land tracts are important in developing brush management plans which may include herbicide application decisions. Near-real-time imaging and analyses of brush using an Unoccupied Aerial System (UAS) is a powerful tool to achieve such tasks. The use of multispectral imagery collected by a UAS to estimate the efficacy of herbicide treatment on noxious brush has not been evaluated previously. There has been no previous comparison of band combinations and pixel- and object-based methods to determine the best methodology for discrimination and classification of noxious brush species with Random Forest (RF) classification. In this study, two rangelands in southern Texas with encroachment of huisache (Vachellia farnesianna [L.] Wight & Arn.) and honey mesquite (Prosopis glandulosa Torr. var. glandulosa) were studied. Two study sites were flown with an eBee X fixed-wing to collect UAS images with four bands (Green, Red, Red-Edge, and Near-infrared) and ground truth data points pre- and post-herbicide application to study the herbicide effect on brush. Post-herbicide data were collected one year after herbicide application. Pixel-based and object-based RF classifications were used to identify brush in orthomosaic images generated from UAS images. The classification had an overall accuracy in the range 83–96%, and object-based classification had better results than pixel-based classification since object-based classification had the highest overall accuracy in both sites at 96%. The UAS image was useful for assessing herbicide efficacy by calculating canopy change after herbicide treatment. Different effects of herbicides and application rates on brush defoliation were measured by comparing canopy change in herbicide treatment zones. UAS-derived multispectral imagery can be used to identify brush species in rangelands and aid in objectively assessing the herbicide effect on brush encroachment

    Determination of the Axial-Vector Weak Coupling Constant with Ultracold Neutrons

    Get PDF
    A precise measurement of the neutron decay ÎČ\beta-asymmetry A0A_0 has been carried out using polarized ultracold neutrons (UCN) from the pulsed spallation UCN source at the Los Alamos Neutron Science Center (LANSCE). Combining data obtained in 2008 and 2009, we report A0=−0.11966±0.00089−0.00140+0.00123A_0 = -0.11966 \pm 0.00089_{-0.00140}^{+0.00123}, from which we determine the ratio of the axial-vector to vector weak coupling of the nucleon gA/gV=−1.27590−0.00445+0.00409g_A/g_V = -1.27590_{-0.00445}^{+0.00409}.Comment: 5 pages, 2 figure

    Final results for the neutron ÎČ-asymmetry parameter A₀ from the UCNA experiment

    Get PDF
    The UCNA experiment was designed to measure the neutron ÎČ-asymmetry parameter A0 using polarized ultracold neutrons (UCN). UCN produced via downscattering in solid deuterium were polarized via transport through a 7 T magnetic field, and then directed to a 1 T solenoidal electron spectrometer, where the decay electrons were detected in electron detector packages located on the two ends of the spectrometer. A value for A0 was then extracted from the asymmetry in the numbers of counts in the two detector packages. We summarize all of the results from the UCNA experiment, obtained during run periods in 2007, 2008–2009, 2010, and 2011–2013, which ultimately culminated in a 0.67% precision result for A₀

    Dark Stars and Boosted Dark Matter Annihilation Rates

    Full text link
    Dark Stars (DS) may constitute the first phase of stellar evolution, powered by dark matter (DM) annihilation. We will investigate here the properties of DS assuming the DM particle has the required properties to explain the excess positron and elec- tron signals in the cosmic rays detected by the PAMELA and FERMI satellites. Any possible DM interpretation of these signals requires exotic DM candidates, with an- nihilation cross sections a few orders of magnitude higher than the canonical value required for correct thermal relic abundance for Weakly Interacting Dark Matter can- didates; additionally in most models the annihilation must be preferentially to lep- tons. Secondly, we study the dependence of DS properties on the concentration pa- rameter of the initial DM density profile of the halos where the first stars are formed. We restrict our study to the DM in the star due to simple (vs. extended) adiabatic contraction and minimal (vs. extended) capture; this simple study is sufficient to illustrate dependence on the cross section and concentration parameter. Our basic results are that the final stellar properties, once the star enters the main sequence, are always roughly the same, regardless of the value of boosted annihilation or concentration parameter in the range between c=2 and c=5: stellar mass ~ 1000M\odot, luminosity ~ 10^7 L\odot, lifetime ~ 10^6 yrs (for the minimal DM models considered here; additional DM would lead to more massive dark stars). However, the lifetime, final mass, and final luminosity of the DS show some dependence on boost factor and concentration parameter as discussed in the paper.Comment: 37 pages, 11 figure

    The Multi-Object, Fiber-Fed Spectrographs for SDSS and the Baryon Oscillation Spectroscopic Survey

    Full text link
    We present the design and performance of the multi-object fiber spectrographs for the Sloan Digital Sky Survey (SDSS) and their upgrade for the Baryon Oscillation Spectroscopic Survey (BOSS). Originally commissioned in Fall 1999 on the 2.5-m aperture Sloan Telescope at Apache Point Observatory, the spectrographs produced more than 1.5 million spectra for the SDSS and SDSS-II surveys, enabling a wide variety of Galactic and extra-galactic science including the first observation of baryon acoustic oscillations in 2005. The spectrographs were upgraded in 2009 and are currently in use for BOSS, the flagship survey of the third-generation SDSS-III project. BOSS will measure redshifts of 1.35 million massive galaxies to redshift 0.7 and Lyman-alpha absorption of 160,000 high redshift quasars over 10,000 square degrees of sky, making percent level measurements of the absolute cosmic distance scale of the Universe and placing tight constraints on the equation of state of dark energy. The twin multi-object fiber spectrographs utilize a simple optical layout with reflective collimators, gratings, all-refractive cameras, and state-of-the-art CCD detectors to produce hundreds of spectra simultaneously in two channels over a bandpass covering the near ultraviolet to the near infrared, with a resolving power R = \lambda/FWHM ~ 2000. Building on proven heritage, the spectrographs were upgraded for BOSS with volume-phase holographic gratings and modern CCD detectors, improving the peak throughput by nearly a factor of two, extending the bandpass to cover 360 < \lambda < 1000 nm, and increasing the number of fibers from 640 to 1000 per exposure. In this paper we describe the original SDSS spectrograph design and the upgrades implemented for BOSS, and document the predicted and measured performances.Comment: 43 pages, 42 figures, revised according to referee report and accepted by AJ. Provides background for the instrument responsible for SDSS and BOSS spectra. 4th in a series of survey technical papers released in Summer 2012, including arXiv:1207.7137 (DR9), arXiv:1207.7326 (Spectral Classification), and arXiv:1208.0022 (BOSS Overview

    Indoor robot gardening: design and implementation

    Get PDF
    This paper describes the architecture and implementation of a distributed autonomous gardening system with applications in urban/indoor precision agriculture. The garden is a mesh network of robots and plants. The gardening robots are mobile manipulators with an eye-in-hand camera. They are capable of locating plants in the garden, watering them, and locating and grasping fruit. The plants are potted cherry tomatoes enhanced with sensors and computation to monitor their well-being (e.g. soil humidity, state of fruits) and with networking to communicate servicing requests to the robots. By embedding sensing, computation, and communication into the pots, task allocation in the system is de-centrally coordinated, which makes the system scalable and robust against the failure of a centralized agent. We describe the architecture of this system and present experimental results for navigation, object recognition, and manipulation as well as challenges that lie ahead toward autonomous precision agriculture with multi-robot teams.Swiss National Science Foundation (contract number PBEL2118737)United States. Army Research Office. Multidisciplinary University Research Initiative (MURI SWARMS project W911NF-05-1-0219)National Science Foundation (U.S.) (NSF IIS-0426838)Intel Corporation (EFRI 0735953 Intel)Massachusetts Institute of Technology (UROP program)Massachusetts Institute of Technology (MSRP program
    • 

    corecore