49 research outputs found

    Focal Plate Structure Alignment of the Dark Energy Spectroscopic Instrument

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the universe using the Baryon Acoustic Oscillation (BAO) technique. The spectra of 35 million galaxies and quasars over 14000 deg214000 \,\text{deg}^2 will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 robotically positioned optic fibres. The fibres in turn feed ten broadband spectrographs. Proper alignment of focal plate structure, mainly consisting of a focal plate ring (FPR) and ten focal plate petals (FPP), is crucial in ensuring minimal loss of light in the focal plane. A coordinate measurement machine (CMM) metrology-based approach to alignment requires comprehensive characterisation of critical dimensions of the petals and the ring, all of which were 100% inspected. The metrology data not only served for quality assurance (QA), but also, with careful modelling of geometric transformations, informed the initial choice of integration accessories such as gauge blocks, pads, and shims. The integrated focal plate structure was inspected again on a CMM, and each petal was adjusted according to the updated focal plate metrology data until all datums were extremely close to nominal positions and optical throughput nearly reached the theoretically best possible value. This paper presents our metrology and alignment methodology and complete results for twelve official DESI petals. The as-aligned, total RMS optical throughput for 6168 positioner holes of twelve production petals was indirectly measured to be 99.88±0.12%99.88 \pm 0.12 \%, well above the 99.5% project requirement. The successful alignment fully demonstrated the wealth of data, reproducibility, and micron-level precision made available by our CMM metrology-based approach.Comment: 17 pages, 10 figures, 3 table

    Dark Energy Spectroscopic Instrument (DESI) Fiber Positioner Production

    Full text link
    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We will describe the production and manufacturing processes developed for the 5000 fiber positioner robots mounted on the focal plane of the Mayall telescope.Comment: SPIE 201

    The DESI One-Percent Survey: Evidence for Assembly Bias from Low-Redshift Counts-in-Cylinders Measurements

    Full text link
    We explore the galaxy-halo connection information that is available in low-redshift samples from the early data release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD) from z=0.1-0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright Galaxy Survey (BGS). In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC) measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package, galtab, which enables the rapid, precise prediction of CiC for any HOD model available in halotools. This methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies in z∼0.15z\sim0.15 samples with limiting absolute magnitude Mr<−20.0M_r < -20.0 and Mr<−20.5M_r < -20.5 samples is positively correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor positive central assembly bias for the brighter Mr<−21.0M_r < -21.0 sample at z∼0.25z\sim0.25 (94.8% significance), but there is no significant evidence for assembly bias with the same luminosity threshold at z∼0.15z\sim0.15. We provide our constraints for each threshold sample's characteristic halo masses, assembly bias, and other HOD parameters. These constraints are expected to be significantly tightened with future DESI data, which will span an area 100 times larger than that of SV3

    The DESI One-percent Survey: Evidence for Assembly Bias from Low-redshift Counts-in-cylinders Measurements

    Get PDF
    We explore the galaxy-halo connection information that is available in low-redshift samples from the early data release of the Dark Energy Spectroscopic Instrument (DESI). We model the halo occupation distribution (HOD) from z = 0.1 to 0.3 using Survey Validation 3 (SV3; a.k.a., the One-Percent Survey) data of the DESI Bright Galaxy Survey. In addition to more commonly used metrics, we incorporate counts-in-cylinders (CiC) measurements, which drastically tighten HOD constraints. Our analysis is aided by the Python package, galtab, which enables the rapid, precise prediction of CiC for any HOD model available in halotools. This methodology allows our Markov chains to converge with much fewer trial points, and enables even more drastic speedups due to its GPU portability. Our HOD fits constrain characteristic halo masses tightly and provide statistical evidence for assembly bias, especially at lower luminosity thresholds: the HOD of central galaxies in z ∼ 0.15 samples with limiting absolute magnitude M r < −20.0 and M r < −20.5 samples is positively correlated with halo concentration with a significance of 99.9% and 99.5%, respectively. Our models also favor positive central assembly bias for the brighter M r < −21.0 sample at z ∼ 0.25 (94.8% significance), but there is no significant evidence for assembly bias with the same luminosity threshold at z ∼ 0.15. We provide our constraints for each threshold sample’s characteristic halo masses, assembly bias, and other HOD parameters. These constraints are expected to be significantly tightened with future DESI data, which will span an area 100 times larger than that of SV3

    DESI mock challenge: constructing DESI galaxy catalogues based on FastPM simulations

    Get PDF
    Together with larger spectroscopic surveys such as the Dark Energy Spectroscopic Instrument (DESI), the precision of large scale structure studies and thus the constraints on the cosmological parameters are rapidly improving. Therefore, one must buildrealistic simulations and robust covariance matrices. We build galaxy catalogues by applying a halo occupation distribution(HOD) model upon the FASTPM simulations, such that the resulting galaxy clustering reproduces high-resolution N-bodysimulations. While the resolution and halo finder are different from the reference simulations, we reproduce the reference galaxytwo-point clustering measurements – monopole and quadrupole – to a precision required by the DESI Year 1 emission line galaxysample down to non-linear scales, i.e. k 10 Mpc h−1. Furthermore, we compute covariance matrices basedon the resulting FASTPM galaxy clustering – monopole and quadrupole. We study for the first time the effect of fitting on Fourierconjugate (e.g. power spectrum) on the covariance matrix of the Fourier counterpart (e.g. correlation function). We estimate theuncertainties of the two parameters of a simple clustering model and observe a maximum variation of 20 per cent for the differentcovariance matrices. Nevertheless, for most studied scales the scatter is between 2 and 10 per cent. Consequently, using thecurrent pipeline we can precisely reproduce the clustering of N-body simulations and the resulting covariance matrices providerobust uncertainty estimations against HOD fitting scenarios. We expect our methodology will be useful for the coming DESIdata analyses and their extension for other studies

    The DESI One-Percent survey: constructing galaxy-halo connections for ELGs and LRGs using auto and cross correlations

    Full text link
    In the current Dark Energy Spectroscopic Instrument (DESI) survey, emission line galaxies (ELGs) and luminous red galaxies (LRGs) are essential for mapping the dark matter distribution at z∼1z \sim 1. We measure the auto and cross correlation functions of ELGs and LRGs at 0.8<z≤1.00.8<z\leq 1.0 from the DESI One-Percent survey. Following Gao et al. (2022), we construct the galaxy-halo connections for ELGs and LRGs simultaneously. With the stellar-halo mass relation (SHMR) for the whole galaxy population (i.e. normal galaxies), LRGs can be selected directly by stellar mass, while ELGs can also be selected randomly based on the observed number density of each stellar mass, once the probability PsatP_{\mathrm{sat}} of a satellite galaxy becoming an ELG is determined. We demonstrate that the observed small scale clustering prefers a halo mass-dependent PsatP_{\mathrm{sat}} model rather than a constant. With this model, we can well reproduce the auto correlations of LRGs and the cross correlations between LRGs and ELGs at rp>0.1r_{\mathrm{p}}>0.1 Mpc h−1\mathrm{Mpc}\,h^{-1}. We can also reproduce the auto correlations of ELGs at rp>0.3r_{\mathrm{p}}>0.3 Mpc h−1\mathrm{Mpc}\,h^{-1} (s>1s>1 Mpc h−1\mathrm{Mpc}\,h^{-1}) in real (redshift) space. Although our model has only seven parameters, we show that it can be extended to higher redshifts and reproduces the observed auto correlations of ELGs in the whole range of 0.8<z<1.60.8<z<1.6, which enables us to generate a lightcone ELG mock for DESI. With the above model, we further derive halo occupation distributions (HODs) for ELGs which can be used to produce ELG mocks in coarse simulations without resolving subhalos.Comment: 27 pages, 16 figures, accepted by Ap

    Mitigating the noise of DESI mocks using analytic control variates

    Full text link
    In order to address fundamental questions related to the expansion history of the Universe and its primordial nature with the next generation of galaxy experiments, we need to model reliably large-scale structure observables such as the correlation function and the power spectrum. Cosmological NN-body simulations provide a reference through which we can test our models, but their output suffers from sample variance on large scales. Fortunately, this is the regime where accurate analytic approximations exist. To reduce the variance, which is key to making optimal use of these simulations, we can leverage the accuracy and precision of such analytic descriptions using Control Variates (CV). We apply two control variate formulations to mock catalogs generated in anticipation of upcoming data from the Dark Energy Spectroscopic Instrument (DESI) to test the robustness of its analysis pipeline. Our CV-reduced measurements, of the power spectrum and correlation function, both pre- and post-reconstruction, offer a factor of 5-10 improvement in the measurement error compared with the raw measurements from the DESI mock catalogs. We explore the relevant properties of the galaxy samples that dictate this reduction and comment on the improvements we find on some of the derived quantities relevant to Baryon Acoustic Oscillation (BAO) analysis. We also provide an optimized package for computing the power spectra and other two-point statistics of an arbitrary galaxy catalog as well as a pipeline for obtaining CV-reduced measurements on any of the AbacusSummit cubic box outputs. We make our scripts, notebooks, and benchmark tests against existing software publicly available and report a speed improvement of a factor of ∼\sim10 for a grid size of Nmesh=2563N_{\rm mesh} = 256^3 compared with nbodykit\texttt{nbodykit}.Comment: 15 pages, 9 figures, public package (for power spectrum and control variates estimation

    Changing-look Active Galactic Nuclei from the Dark Energy Spectroscopic Instrument. I. Sample from the Early Data

    Get PDF
    Changing-look active galactic nuclei (CL AGNs) can be generally confirmed by the emergence (turn-on) or disappearance (turn-off) of broad emission lines (BELs), associated with a transient timescale (about 100 ∼ 5000 days) that is much shorter than predicted by traditional accretion disk models. We carry out a systematic CL AGN search by crossmatching the spectra coming from the Dark Energy Spectroscopic Instrument and the Sloan Digital Sky Survey. Following previous studies, we identify CL AGNs based on Hα, Hβ, and Mg ii at z ≤ 0.75 and Mg ii, C iii], and C iv at z > 0.75. We present 56 CL AGNs based on visual inspection and three selection criteria, including 2 Hα, 34 Hβ, 9 Mg ii, 18 C iii], and 1 C iv CL AGN. Eight cases show simultaneous appearances/disappearances of two BELs. We also present 44 CL AGN candidates with significant flux variation of BELs, but remaining strong broad components. In the confirmed CL AGNs, 10 cases show additional CL candidate features for different lines. In this paper, we find: (1) a 24:32 ratio of turn-on to turn-off CL AGNs; (2) an upper-limit transition timescale ranging from 330 to 5762 days in the rest frame; and (3) the majority of CL AGNs follow the bluer-when-brighter trend. Our results greatly increase the current CL census (∼30%) and would be conducive to exploring the underlying physical mechanism

    Validation of semi-analytical, semi-empirical covariance matrices for two-point correlation function for Early DESI data

    Full text link
    We present an extended validation of semi-analytical, semi-empirical covariance matrices for the two-point correlation function (2PCF) on simulated catalogs representative of Luminous Red Galaxies (LRG) data collected during the initial two months of operations of the Stage-IV ground-based Dark Energy Spectroscopic Instrument (DESI). We run the pipeline on multiple extended Zel'dovich (EZ) mock galaxy catalogs with the corresponding cuts applied and compare the results with the mock sample covariance to assess the accuracy and its fluctuations. We propose an extension of the previously developed formalism for catalogs processed with standard reconstruction algorithms. We consider methods for comparing covariance matrices in detail, highlighting their interpretation and statistical properties caused by sample variance, in particular, nontrivial expectation values of certain metrics even when the external covariance estimate is perfect. With improved mocks and validation techniques, we confirm a good agreement between our predictions and sample covariance. This allows one to generate covariance matrices for comparable datasets without the need to create numerous mock galaxy catalogs with matching clustering, only requiring 2PCF measurements from the data itself. The code used in this paper is publicly available at https://github.com/oliverphilcox/RascalC.Comment: 19 pages, 1 figure. Code available at https://github.com/oliverphilcox/RascalC, table and figure data available at https://dx.doi.org/10.5281/zenodo.775063

    Long-term follow-up observations of extreme coronal line emitting galaxies

    Full text link
    We present new spectroscopic and photometric follow-up observations of the known sample of extreme coronal line emitting galaxies (ECLEs) identified in the Sloan Digital Sky Survey (SDSS). With these new data, observations of the ECLE sample now span a period of two decades following their initial SDSS detections. We confirm the nonrecurrence of the iron coronal line signatures in five of the seven objects, further supporting their identification as the transient light echoes of tidal disruption events (TDEs). Photometric observations of these objects in optical bands show little overall evolution. In contrast, mid-infrared (MIR) observations show ongoing long-term declines. The remaining two objects had been classified as active galactic nuclei (AGN) with unusually strong coronal lines rather than being TDE related, given the persistence of the coronal lines in earlier follow-up spectra. We confirm this classification, with our spectra continuing to show the presence of strong, unchanged coronal-line features and AGN-like MIR colours and behaviour. We have constructed spectral templates of both subtypes of ECLE to aid in distinguishing the likely origin of newly discovered ECLEs. We highlight the need for higher cadence, and more rapid, follow-up observations of such objects to better constrain their properties and evolution. We also discuss the relationships between ECLEs, TDEs, and other identified transients having significant MIR variability.Comment: Submitted to MNRAS. 33 pages, 15 figure
    corecore