11 research outputs found

    Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19

    Get PDF
    Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old

    The microbiome of African penguins (Spheniscus demersus) under managed care resembles that of wild marine mammals and birds

    No full text
    Abstract Animals under managed care in zoos and aquariums are ideal surrogate study subjects for endangered species that are difficult to obtain in the wild. We compared the fecal and oral microbiomes of healthy, managed African penguins (Spheniscus demersus) to those of other domestic and wild vertebrate hosts to determine how host identity, diet, and environment shape the penguin microbiome. The African penguin oral microbiome was more similar to that of piscivorous marine mammals, suggesting that diet and a marine environment together play a strong role in shaping the oral microbiome. Conversely, the penguin cloaca/fecal microbiome was more similar to that of other birds, suggesting that host phylogeny plays a significant role in shaping the gut microbiome. Although the penguins were born under managed care, they had a gut microbiome more similar to that of wild bird species compared to domesticated (factory-farmed) birds, suggesting that the managed care environment and diet resemble those experienced by wild birds. Finally, the microbiome composition at external body sites was broadly similar to that of the habitat, suggesting sharing of microbes between animals and their environment. Future studies should link these results to microbial functional capacity and host health, which will help inform conservation efforts

    Clinical neurological outcome and quality of life among patients with limited small-cell cancer treated with two different doses of prophylactic cranial irradiation in the intergroup phase III trial (PCI99-01, EORTC 22003-08004, RTOG 0212 and IFCT 99-01).

    No full text

    Human Immunodeficiency Virus Type 1 Group O Infection in France: Clinical Features and Immunovirological Response to Antiretrovirals

    No full text
    International audienc

    Keloids and Hypertrophic Scars: A Spectrum of Clinical Challenges

    No full text
    corecore