11 research outputs found
Recommended from our members
Inhibition of activin A receptor signalling attenuates age-related pathological cardiac remodelling
In the heart, ageing is associated with DNA damage, oxidative stress, fibrosis and activation of the activin signalling pathway, leading to cardiac dysfunction. The cardiac effects of activin signalling blockade in progeria are unknown. This study investigated the cardiac effects of progeria induced by attenuated levels of Ercc1 required for DNA excision/repair and the impact of activin signalling blockade using a soluble activin receptor type IIB (sActRIIB).
DNA damage and oxidative stress were significantly increased in Ercc1Δ/- hearts but were reduced by sActRIIB treatment. sActRIIB treatment improved cardiac systolic function and induced cardiomyocyte hypertrophy in Ercc1Δ/- hearts.
RNA-seq analysis showed that in Ercc1Δ/- hearts there was an increase in pro-oxidant and a decrease in antioxidant gene expression, whilst sActRIIB treatment reversed this. Ercc1Δ/- hearts also expressed higher levels of anti-hypertrophic genes and a decrease in pro-hypertrophic ones which were also reversed by sActRIIB treatment.
These results show for the first time that inhibition of activin A receptor signalling attenuates cardiac dysfunction, pathological tissue remodelling and gene expression in Ercc1 deficient mice and presents a potentially novel therapeutic target for heart diseases
Recommended from our members
Intact myocardial preparations reveal intrinsic transmural heterogeneity in cardiac mechanics
Determining transmural mechanical properties in the heart provides a foundation to understand physiological and pathophysiological cardiac mechanics. Although work on mechanical characterisation has begun in isolated cells and permeabilised samples, the mechanical profile of living individual cardiac layers has not been examined. Myocardial slices are 300 μm-thin sections of heart tissue with preserved cellular stoichiometry, extracellular matrix, and structural architecture. This allows for cardiac mechanics assays in the context of an intact in vitro organotypic preparation. In slices obtained from the subendocardium, midmyocardium and subepicardium of rats, a distinct pattern in transmural contractility is found that is different from that observed in other models. Slices from the epicardium and midmyocardium had a higher active tension and passive tension than the endocardium upon stretch. Differences in total myocyte area coverage, and aspect ratio between layers underlined the functional readouts, while no differences were found in total sarcomeric protein and phosphoprotein between layers. Such intrinsic heterogeneity may orchestrate the normal pumping of the heart in the presence of transmural strain and sarcomere length gradients in the in vivo heart
Rare predicted loss-of-function variants of type I IFN immunity genes are associated with life-threatening COVID-19
Background: We previously reported that impaired type I IFN activity, due to inborn errors of TLR3- and TLR7-dependent type I interferon (IFN) immunity or to autoantibodies against type I IFN, account for 15–20% of cases of life-threatening COVID-19 in unvaccinated patients. Therefore, the determinants of life-threatening COVID-19 remain to be identified in ~ 80% of cases. Methods: We report here a genome-wide rare variant burden association analysis in 3269 unvaccinated patients with life-threatening COVID-19, and 1373 unvaccinated SARS-CoV-2-infected individuals without pneumonia. Among the 928 patients tested for autoantibodies against type I IFN, a quarter (234) were positive and were excluded. Results: No gene reached genome-wide significance. Under a recessive model, the most significant gene with at-risk variants was TLR7, with an OR of 27.68 (95%CI 1.5–528.7, P = 1.1 × 10−4) for biochemically loss-of-function (bLOF) variants. We replicated the enrichment in rare predicted LOF (pLOF) variants at 13 influenza susceptibility loci involved in TLR3-dependent type I IFN immunity (OR = 3.70[95%CI 1.3–8.2], P = 2.1 × 10−4). This enrichment was further strengthened by (1) adding the recently reported TYK2 and TLR7 COVID-19 loci, particularly under a recessive model (OR = 19.65[95%CI 2.1–2635.4], P = 3.4 × 10−3), and (2) considering as pLOF branchpoint variants with potentially strong impacts on splicing among the 15 loci (OR = 4.40[9%CI 2.3–8.4], P = 7.7 × 10−8). Finally, the patients with pLOF/bLOF variants at these 15 loci were significantly younger (mean age [SD] = 43.3 [20.3] years) than the other patients (56.0 [17.3] years; P = 1.68 × 10−5). Conclusions: Rare variants of TLR3- and TLR7-dependent type I IFN immunity genes can underlie life-threatening COVID-19, particularly with recessive inheritance, in patients under 60 years old
The microbiome of African penguins (Spheniscus demersus) under managed care resembles that of wild marine mammals and birds
Abstract Animals under managed care in zoos and aquariums are ideal surrogate study subjects for endangered species that are difficult to obtain in the wild. We compared the fecal and oral microbiomes of healthy, managed African penguins (Spheniscus demersus) to those of other domestic and wild vertebrate hosts to determine how host identity, diet, and environment shape the penguin microbiome. The African penguin oral microbiome was more similar to that of piscivorous marine mammals, suggesting that diet and a marine environment together play a strong role in shaping the oral microbiome. Conversely, the penguin cloaca/fecal microbiome was more similar to that of other birds, suggesting that host phylogeny plays a significant role in shaping the gut microbiome. Although the penguins were born under managed care, they had a gut microbiome more similar to that of wild bird species compared to domesticated (factory-farmed) birds, suggesting that the managed care environment and diet resemble those experienced by wild birds. Finally, the microbiome composition at external body sites was broadly similar to that of the habitat, suggesting sharing of microbes between animals and their environment. Future studies should link these results to microbial functional capacity and host health, which will help inform conservation efforts
Human Immunodeficiency Virus Type 1 Group O Infection in France: Clinical Features and Immunovirological Response to Antiretrovirals
International audienc