305 research outputs found

    Phytoplankton biomass cycles in the North Atlantic subpolar gyre: A similar mechanism for two different blooms in the Labrador Sea

    Get PDF
    An analysis of seasonal variations in climatological surface chlorophyll points to distinct biogeographical zones in the North Atlantic subpolar gyre. In particular, the Labrador Sea appears well delineated into two regions on either side of the 60°N parallel, with very different climatological phytoplankton biomass cycles. Indeed, north of 60°N, an early and short spring bloom occurs in late April, while south of 60°N, the bloom gradually develops 1 month later and significant biomass persists all summer long. Nevertheless, at climatological scale, the first-order mechanism that controls the bloom is identical for both bioregions. The light-mixing regime can explain the bloom onset in both bioregions. In the Labrador Sea, the blooms seem to rely on a mean community compensation irradiance threshold value of 2.5 mol photon m−2 d−1 over the mixed layer

    Calcite production by Coccolithophores in the South East Pacific Ocean: from desert to jungle

    No full text
    International audienceBIOSOPE cruise achieved an oceanographic transect from the Marquise Islands to the Peru-Chili upwelling (PCU) via the centre of the South Pacific Gyre (SPG). Water samples from 6 depths in the euphotic zone were collected at 20 stations. The concentrations of suspended calcite particles, coccolithophores cells and detached coccoliths were estimated together with size and weight using an automatic polarizing microscope, a digital camera, and a collection of softwares performing morphometry and pattern recognition. Some of these softwares are new and described here for the first time. The coccolithophores standing stocks are usually low and reach maxima west of the PCU. The coccoliths of Emiliania huxleyi, Gephyrocapsa spp. and Crenalithus spp. (Order Isochrysidales) represent 50% of all the suspended calcite particles detected in the size range 0.1–46 ”m (21% of PIC in term of the calcite weight). The latter species are found to grow preferentially in the Chlorophyll maximum zone. In the SPG their maximum concentrations was found to occur between 150 and 200 m, which is very deep for these taxa. The weight and size of coccoliths and coccospheres are correlated. Large and heavy coccoliths and coccospheres are found in the regions with relative higher fertility in the Marquises Island and in the PCU. Small and light coccoliths and coccospheres are found west of the PCU. This distribution may correspond to that of the concentration of calcium and carbonate ions

    Contrasting distribution of aggregates >100 ”m in the upper kilometre of the South-Eastern Pacific

    No full text
    International audienceLarge sinking particles transport organic and inorganic matter into the deeper layers of the oceans. From 70 to 90% of the superficial particulate material is disaggregated within the upper 1000 m. This decrease with depth indicates that remineralization processes are intense during sedimentation. Generally, the estimates of vertical flux rely on the sediment trap data but difficulties inherent in their design, limit the reliability of this information. During the BIOSOPE study in the southeastern Pacific, 76 vertical casts using the Underwater Video Profiler (UVP) and deployments of a limited number of drifting sediment traps provided an opportunity to fit the UVP data to sediment trap flux measurements. We applied than the calculated UVP flux in the upper 1000 m to the whole 8000 km BIOSOPE transect. Comparison between the large particulate material (LPM) abundance and the estimated fluxes from both UVP and sediment traps showed different patterns in different regions. On the western end of the BIOSOPE section the standing stock of particles in the superficial layer was high but the export between 150 and 250 m was low. Below this layer the flux values increased. High values of about 30% of the calculated UVP maximum superficial flux were observed below 900 m at the HNLC station. The South Pacific Gyre exported about 2 mg m-2 d-1. While off Chilean coast 95% of the superficial matter was remineralized or advected in the upper kilometer, 20% of the superficial flux was observed below 900 m near the Chilean coast. These results suggest that the export to deep waters is spatially heterogeneous and related to the different biotic and abiotic factors

    Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation

    Get PDF
    Three unialgal strains of Prochlorococcus and four of Synechococcus were grown in batch culture at low irradiances. The spectral values of light absorption, scattering and backscattering of intact cells in suspension were determined, together with cell counts, size distribution and pigment composition (via HPLC). The spectral efficiency factors Qa, Qb, Qbb for light absorption, scattering and backscattering respectively, were derived, as well as the corresponding chlorophyll-specific coefficients a*, b* and bb*. The pigment used when normalizing is “true” chlorophyll a for Synechococcus, and divinyl-chlorophyll a for Prochlorococcus. In correspondence with small sizes (0.6 ÎŒm, on average) Prochlorococcus exhibits Qb values below those of Synechococcus (size about 0.9 ÎŒm, on average). In contrast, Qa is higher for Prochlorococcus than for Synechococcus, in response to high internal divinyl-chlorophyll content. In the blue part of the spectrum the probability for photons of being absorbed by a Prochlorococcus cell exceeds that of being scattered. Such a combination has never been found before for other algal cells, consistently more efficient as scatterers than as absorbers. The magnitude of the three efficiency Q-factors, as well as their spectral variations, can be understood and reconstructed in the frame of the Mie theory. The impact of these small organisms, dominant in oligotrophic environment, upon the optical properties of such waters are discussed on the basis of their chlorophyll-specific optical coefficients. Their absorption capabilities (per unit of chlorophyll) are not far from being maximum, to the extent that the package effect is rather reduced. With respect to scattering, Prochlorococcus cells have a minute signature compared to that of Synechococcus. This point is illustrated using vertical profiles of fluorescence, attenuation coefficient, cell number, Chl a and divinyl-Chl a concentrations, as observed in an oligotrophic tropical situation. Even if the backscattering-to-scattering ratio is, as theoretically expected, higher for Prochlorococcus than for all other algae (including Synechococcus), their light backscattering capacity definitely remains negligible

    Contribution of picoplankton to the total particulate organic carbon (POC) concentration in the eastern South Pacific

    Get PDF
    International audienceProchlorococcus, Synechococcus, picophytoeukaryotes and bacterioplankton abundances and contributions to the total particulate organic carbon concentration (POC), derived from the total particle beam attenuation coefficient (cp), were determined across the eastern South Pacific between the Marquesas Islands and the coast of Chile. All flow cytometrically derived abundances decreased towards the hyper-oligotrophic centre of the gyre and were highest at the coast, except for Prochlorococcus, which is not detected under eutrophic conditions. Temperature and nutrient availability appeared important in modulating picophytoplankton abundance, according to the prevailing trophic conditions. Although the non-vegetal particles tended to dominate the cp signal everywhere along the transect (50 to 83%), this dominance seemed to weaken from oligo- to eutrophic conditions, the contributions by vegetal and non-vegetal particles being about equal under mature upwelling conditions. Spatial variability in the vegetal compartment was more important than the non-vegetal one in shaping the water column particulate attenuation coefficient. Spatial variability in picophytoplankton biomass could be traced by changes in both Tchla and cp. Finally, picophytoeukaryotes contributed with ~38% on average to the total integrated phytoplankton carbon biomass or vegetal attenuation signal along the transect, as determined by direct size measurements on cells sorted by flow cytometry and optical theory. The role of picophytoeukaryotes in carbon and energy flow would therefore be very important, even under hyper-oligotrophic conditions

    Contribution of picoplankton to the total particulate organic carbon concentration in the eastern South Pacific

    Get PDF
    International audienceProchlorococcus, Synechococcus, picophytoeukaryotes and bacterioplankton abundances and contributions to the total particulate organic carbon concentration, derived from the total particle beam attenuation coefficient (cp), were determined across the eastern South Pacific between the Marquesas Islands and the coast of Chile. All flow cytometrically derived abundances decreased towards the hyper-oligotrophic centre of the gyre and were highest at the coast, except for Prochlorococcus, which was not detected under eutrophic conditions. Temperature and nutrient availability appeared important in modulating picophytoplankton abundance, according to the prevailing trophic conditions. Although the non-vegetal particles tended to dominate the cp signal everywhere along the transect (50 to 83%), this dominance seemed to weaken from oligo- to eutrophic conditions, the contributions by vegetal and non-vegetal particles being about equal under mature upwelling conditions. Spatial variability in the vegetal compartment was more important than the non-vegetal one in shaping the water column particle beam attenuation coefficient. Spatial variability in picophytoplankton biomass could be traced by changes in both total chlorophyll a (i.e. mono + divinyl chlorophyll a) concentration and cp. Finally, picophytoeukaryotes contributed ~38% on average to the total integrated phytoplankton carbon biomass or vegetal attenuation signal along the transect, as determined by size measurements (i.e. equivalent spherical diameter) on cells sorted by flow cytometry and optical theory. Although there are some uncertainties associated with these estimates, the new approach used in this work further supports the idea that picophytoeukaryotes play a dominant role in carbon cycling in the upper open ocean, even under hyper-oligotrophic conditions

    Optical backscattering properties of the "clearest" natural waters

    No full text
    International audienceDuring the BIOSOPE field campaign October–December 2004, measurements of inherent optical properties from the surface to 500 m depth were made with a ship profiler at stations covering over ~8000 km through the Southeast Pacific Ocean. Data from a ~3000 km section containing the very clearest waters in the central gyre are reported here. The total volume scattering function at 117°, ßt(117°), was measured with a WET Labs ECO-BB3 sensor at 462, 532, and 650 nm with estimated uncertainties of 2×10-5, 5×10-6, and 2×10-6 m-1 sr-1, respectively. These values were approximately 6%, 3%, and 3% of the scattering by pure seawater at their respective wavelengths. From a methodological perspective, there were several results: – bbp distributions were resolvable even though some of the values from the central gyre were an order of magnitude lower than the lowest previous measurements in the literature; – Direct in-situ measurements of instrument dark offsets were necessary to accurately resolve backscattering at these low levels; – accurate pure seawater backscattering values are critical in determining particulate backscattering coefficients in the open ocean (not only in these very clear waters); the pure water scattering values determined by Buiteveld et al. (1994) with a [1 + 0.3S/37] adjustment for salinity based on Morel (1974) appear to be the most accurate estimates, with aggregate accuracies as low as a few percent; and – closure was demonstrated with subsurface reflectance measurements reported by Morel et al. (2007) within instrument precisions, a useful factor in validating the backscattering measurements. This methodology enabled several observations with respect to the hydrography and the use of backscattering as a biogeochemical proxy: – The clearest waters sampled were found at depths between 300 and 350 m, from 23.5° S, 118° W to 26° S, 114° W, where total backscattering at 650 nm was not distinguishable from pure seawater; – Distributions of particulate backscattering bbp across the central gyre exhibited a broad particle peak centered ~100 m; – The particulate backscattering ratio typically ranged between 0.4% and 0.6% through the majority of the central gyre from the surface to ~210 m, indicative of "soft" water-filled particles with low bulk refractive index; and – bbp at 532 and 650 nm showed a distinct secondary deeper layer centered ~230 m that was absent in particulate attenuation cp data. The particulate backscattering ratio was significantly higher in this layer than in the rest of the water column, reaching 1.2% in some locations. This high relative backscattering, along with the pigment composition and ecological niche of this layer, appear to be consistent with the coccolithophorid F. profunda. Moreover, results were consistent with several expectations extrapolated from theory and previous work in oceanic and coastal regions, supporting the conclusion that particulate and total backscattering could be resolved in these extremely clear natural waters

    Assessing Pigment-Based Phytoplankton Community Distributions in the Red Sea

    Get PDF
    Pigment-based phytoplankton community composition and primary production were investigated for the first time in the Red Sea in February-April 2015 to demonstrate how the strong south to north environmental gradients determine phytoplankton community structure in Red Sea offshore regions (along the central axis). Taxonomic pigments were used as size group markers of pico, nano-, and microphytoplankton. Phytoplankton primary production rates associated with the three phytoplankton groups (pico-, nano-, and microphytoplankton) were estimated using a bio-optical model. Pico- (Synechococcus and Prochlorococcus sp.) and Nanophytoplankton (Prymnesiophytes and Pelagophytes) were the dominant size groups and contributed to 49 and 38%, respectively, of the phytoplankton biomass. Microphytoplankton (diatoms) contributed to 13% of the phytoplankton biomass within the productive layer (1.5 Zeu). Sub-basin and mesoscale structures (cyclonic eddy and mixing) were exceptions to this general trend. In the southern Red Sea, diatoms and picophytoplankton contributed to 27 and 31% of the phytoplankton biomass, respectively. This result induced higher primary production rates (430 ± 50 mgC m−2 d−1) in this region (opposed to CRS and NRS). The cyclonic eddy contained the highest microphytoplankton proportion (45% of TChla) and the lowest picophytoplankton contribution (17% of TChla) while adjacent areas were dominated by pico- and nano-phytoplankton. We estimated that the cyclonic eddy is an area of enhanced primary production, which is up to twice those of the central part of the basin. During the mixing of the water column in the extreme north of the basin, we observed the highest TChla integrated (40 mg m−2) and total primary production rate (640 mgC m−2 d−1) associated with the highest nanophytoplankton contribution (57% of TChla). Microphytoplankton were a major contributor to total primary production (54%) in the cyclonic eddy. The contribution of picophytoplankton (Synechococcus and Prochlorococcus sp.) reached maximum values (49%) in the central Red Sea. Nanophytoplankton seem to provide a ubiquitous substantial contribution (30–56%). Our results contribute to providing new insights on the spatial distribution and structure of phytoplankton groups. An understanding and quantification of the carbon cycle in the Red Sea was made based on estimates of primary production associated with pico-, nano-, and microphytoplankton

    OneArgo: a new paradigm for observing the global ocean

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Owens, W., Zilberman, N., Johnson, K., Claustre, H., Scanderbeg, M., Wijffels, S., & Suga, T. OneArgo: a new paradigm for observing the global ocean. Marine Technology Society Journal, 56(3), (2022): 84–90, https://doi.org/10.4031/MTSJ.56.3.8.OneArgo is a major expansion of the Argo program, which has provided two decades of transformative physical data for the upper 2 km of the global ocean. The present Argo array will be expanded in three ways: (1) Global Core: the existing upper ocean measurements will be extended to high latitudes and marginal seas and with enhanced coverage in the tropics and western boundaries of the major ocean basins; (2) Deep: deep ocean measurements will be obtained for the 50% of the global oceans that are below 2,000-m depth; and (3) Biogeochemical: dissolved oxygen, pH, nitrate, chlorophyll, optical backscatter, and irradiance data will be collected to investigate biogeochemical variability of the upper ocean and the processes by which these cycles respond to a changing climate. The technology and infrastructure necessary for this expansion is now being developed through large-scale regional pilots to further refine the floats and sensors and to demonstrate the utility of these measurements. Further innovation is expected to improve the performance of the floats and sensors and to develop the analyses necessary to provide research-quality data. A fully global OneArgo should be operational within 5–10 years.In the United States, the National Science Foundation–funded Global Ocean Biogeochemistry Array (GO-BGC; https://go-bgc.org)

    Nitrogen deprivation strongly affects Photosystem II but not phycoerythrin level in the divinyl-chlorophyll b-containing cyanobacterium Prochlorococcus marinus

    Get PDF
    AbstractEffects of nitrogen limitation on Photosystem II (PSII) activities and on phycoerythrin were studied in batch cultures of the marine oxyphotobacterium Prochlorococcus marinus. Dramatic decreases in photochemical quantum yields (FV/FM), the amplitude of thermoluminescence (TL) B-band, and the rate of QA reoxidation were observed within 12 h of growth in nitrogen-limited conditions. The decline in FV/FM paralleled changes in the TL B-band amplitude, indicative of losses in PSII activities and formation of non-functional PSII centers. These changes were accompanied by a continuous reduction in D1 protein content. In contrast, nitrogen deprivation did not cause any significant reduction in phycoerythrin content. Our results refute phycoerythrin as a nitrogen storage complex in Prochlorococcus. Regulation of phycoerythrin gene expression in Prochlorococcus is different from that in typical phycobilisome-containing cyanobacteria and eukaryotic algae investigated so far
    • 

    corecore