182 research outputs found
Electrical conductivity of dispersions: from dry foams to dilute suspensions
We present new data for the electrical conductivity of foams in which the
liquid fraction ranges from two to eighty percent. We compare with a
comprehensive collection of prior data, and we model all results with simple
empirical formul\ae. We achieve a unified description that applies equally to
dry foams and emulsions, where the droplets are highly compressed, as well as
to dilute suspensions of spherical particles, where the particle separation is
large. In the former limit, Lemlich's result is recovered; in the latter limit,
Maxwell's result is recovered
SearchCal: a Virtual Observatory tool for searching calibrators in optical long baseline interferometry. I: The bright object case
In long baseline interferometry, the raw fringe contrast must be calibrated
to obtain the true visibility and then those observables that can be
interpreted in terms of astrophysical parameters. The selection of suitable
calibration stars is crucial for obtaining the ultimate precision of
interferometric instruments like the VLTI. We have developed software SearchCal
that builds an evolutive catalog of stars suitable as calibrators within any
given user-defined angular distance and magnitude around the scientific target.
We present the first version of SearchCal dedicated to the bright-object case
V<=10; K<=5). Star catalogs available at the CDS are consulted via web
requests. They provide all the useful information for selecting of calibrators.
Missing photometries are computed with an accuracy of 0.1 mag and the missing
angular diameters are calculated with a precision better than 10%. For each
star the squared visibility is computed by taking the wavelength and the
maximum baseline of the foreseen observation into account.} SearchCal is
integrated into ASPRO, the interferometric observing preparation software
developed by the JMMC, available at the address: http://mariotti.fr
The fundamental parameters of the roAp star Equulei
Physical processes working in the stellar interiors as well as the evolution
of stars depend on some fundamental stellar properties, such as mass, radius,
luminosity, and chemical abundances. A classical way to test stellar interior
models is to compare the predicted and observed location of a star on
theoretical evolutionary tracks in a H-R diagram. This requires the best
possible determinations of stellar mass, radius, luminosity and abundances. To
derive its fundamental parameters, we observed the well-known rapidly
oscillating Ap star, Equ, using the visible spectro-interferometer
VEGA installed on the optical CHARA array. We computed the calibrated squared
visibility and derived the limb-darkened diameter. We used the whole energy
flux distribution, the parallax and this angular diameter to determine the
luminosity and the effective temperature of the star. We obtained a
limb-darkened angular diameter of 0.564~~0.017~mas and deduced a radius of
~=~2.20~~0.12~. Without considering the multiple
nature of the system, we derived a bolometric flux of erg~cm~s and an effective temperature of
7364~~235~K, which is below the effective temperature that has been
previously determined. Under the same conditions we found a luminosity of
~=~12.8~~1.4~. When the contribution of the closest
companion to the bolometric flux is considered, we found that the effective
temperature and luminosity of the primary star can be, respectively, up to
~100~K and up to ~0.8~L smaller than the values mentioned
above.These new values of the radius and effective temperature should bring
further constraints on the asteroseismic modelling of the star.Comment: Accepted by A&
Revealing the inclined circumstellar disk in the UX Orionis system KK Ophiuchi
This is the final version of the article. Available from EDP Sciences via the DOI in this record.Aims. We study the inner sub-AU region of the circumstellar environment of the UX Ori-type star KK Oph with near-infrared VLTI/AMBER interferometry. We are particularly interested in the inclination of the star-disk system, and we use this information to test the current standard picture for UX Ori stars.
Methods. We recorded spectrally dispersed (R ~ 35) interferograms in the near-infrared H and K bands with the VLTI/AMBER instrument. The derived visibilities, closure phases, and the spectral energy distribution of KK Oph were compared with two-dimensional geometric and radiative transfer models (RADMC).
Results. We obtained visibilities at four different position angles. Using two-dimensional geometric models, we derive an axis ratio ~3.0 corresponding to an inclination of ~70°. A fitted inclined ring model leads to a ring radius of 2.8 ± 0.2 mas, corresponding to 0.44 ± 0.03 AU at a distance of 160 pc, which is larger than the dust sublimation radius of ~0.1 AU predicted for a dust sublimation temperature of 1500 K. Our derived two-dimensional RADMC model consists of a circumstellar disk with an inclination angle of ~70° and an additional dust envelope.
Conclusions. The finding of an ~70° inclined disk around KK Oph is consistent with the prediction that UX Ori objects are seen under large inclination angles, and orbiting clouds in the line of sight cause the observed variability. Furthermore, our results suggest that the orbit of the companion KK Oph B and the disk plane are coplanar.A. Kreplin was supported for this research through a stipend from the International Max Planck Research School (IMPRS) for Astronomy and Astrophysics at the Universities of Bonn and Cologne. V.G. and L.T. were supported in part by the grant of the Presidium of RAS P 21 and grant NSh. – 1625.2012.2. They also thank the Max-Planck-Society for the support during their stay in Bonn. This research has made use of NASA’s Astrophysics Data System Bibliographic Services
Spectral and spatial imaging of the Be+sdO binary phi Persei
The rapidly rotating Be star phi Persei was spun up by mass and angular
momentum transfer from a now stripped-down, hot subdwarf companion. Here we
present the first high angular resolution images of phi Persei made possible by
new capabilities in longbaseline interferometry at near-IR and visible
wavelengths. We observed phi Persei with the MIRC and VEGA instruments of the
CHARA Array. Additional MIRC-only observations were performed to track the
orbital motion of the companion, and these were fit together with new and
existing radial velocity measurements of both stars to derive the complete
orbital elements and distance. The hot subdwarf companion is clearly detected
in the near-IR data at each epoch of observation with a flux contribution of
1.5% in the H band, and restricted fits indicate that its flux contribution
rises to 3.3% in the visible. A new binary orbital solution is determined by
combining the astrometric and radial velocity measurements. The derived stellar
masses are 9.6+-0.3Msol and 1.2+-0.2Msol for the Be primary and subdwarf
secondary, respectively. The inferred distance (186 +- 3 pc), kinematical
properties, and evolutionary state are consistent with membership of phi Persei
in the alpha Per cluster. From the cluster age we deduce significant
constraints on the initial masses and evolutionary mass transfer processes that
transformed the phi Persei binary system. The interferometric data place strong
constraints on the Be disk elongation, orientation, and kinematics, and the
disk angular momentum vector is coaligned with and has the same sense of
rotation as the orbital angular momentum vector. The VEGA visible continuum
data indicate an elongated shape for the Be star itself, due to the combined
effects of rapid rotation, partial obscuration of the photosphere by the
circumstellar disk, and flux from the bright inner disk.Comment: 16 pages, 6 figures, 1 Anne
The Carlina-type diluted telescope: Stellar fringes on Deneb
Context. The performance of interferometers has largely been increased over
the last ten years. But the number of observable objects is still limited due
to the low sensitivity and imaging capability of the current facilities.
Studies have been done to propose a new generation of interferometers. Aims.
The Carlina concept studied at the Haute-Provence Observatory consists in an
optical interferometer configured as a diluted version of the Arecibo radio
telescope: above the diluted primary mirror made of fixed co-spherical
segments, a helium balloon or cables suspended between two mountains and/or
pylons, carries a gondola containing the focal optics. This concept does not
require delay lines. Methods. Since 2003, we have been building a technical
demonstrator of this diluted telescope. The main goals of this project were to
find the opto-mechanical solutions to stabilize the optics attached under
cables at several tens of meters above the ground, and to characterize this
diluted telescope under real conditions. In 2012, we have obtained metrology
fringes, and co-spherized the primary mirrors within one micron accuracy. In
2013, we have tested the whole optical train: servo loop, metrology, and the
focal gondola. Results. We obtained stellar fringes on Deneb in September 2013.
In this paper, we present the characteristics of these observations: quality of
the guiding, S /N reached, and possible improvements for a future system.
Conclusions. It is an important step that demonstrates the feasibility of
building a diluted telescope using cables strained between cliffs or pylons.
Carlina, like the MMT or LBT, could be one of the first members of a new class
of telescopes named Large Diluted Telescopes. Its optical architecture has many
advantages for future projects: Planet Formation Imager, Post-ELTs,
Interferometer in space.Comment: 8 pages, 7 figures, Astronomy & Astrophysic
Tests with a Carlina-type diluted telescope; Primary coherencing
Studies are under way to propose a new generation of post-VLTI
interferometers. The Carlina concept studied at the Haute- Provence Observatory
is one of the proposed solutions. It consists in an optical interferometer
configured like a diluted version of the Arecibo radio telescope: above the
diluted primary mirror made of fixed cospherical segments, a helium balloon (or
cables suspended between two mountains), carries a gondola containing the focal
optics. Since 2003, we have been building a technical demonstrator of this
diluted telescope. First fringes were obtained in May 2004 with two
closely-spaced primary segments and a CCD on the focal gondola. We have been
testing the whole optical train with three primary mirrors. The main aim of
this article is to describe the metrology that we have conceived, and tested
under the helium balloon to align the primary mirrors separate by 5-10 m on the
ground with an accuracy of a few microns. The servo loop stabilizes the mirror
of metrology under the helium balloon with an accuracy better than 5 mm while
it moves horizontally by 30 cm in open loop by 10-20 km/h of wind. We have
obtained the white fringes of metrology; i.e., the three mirrors are aligned
(cospherized) with an accuracy of {\approx} 1 micron. We show data proving the
stability of fringes over 15 minutes, therefore providing evidence that the
mechanical parts are stabilized within a few microns. This is an important step
that demonstrates the feasibility of building a diluted telescope using cables
strained between cliffs or under a balloon. Carlina, like the MMT or LBT, could
be one of the first members of a new class of telescopes named diluted
telescopes.Comment: 18 pages, 17 figures, A&A, accepte
Time, spatial, and spectral resolution of the Halpha line-formation region of Deneb and Rigel with the VEGA/CHARA interferometer
BA-type supergiants are amongst the most optically-bright stars. They are
observable in extragalactic environments, hence potential accurate distance
indicators. Emission activity in the Halpha line of the BA supergiants Rigel
(B8Ia) and Deneb (A2Ia) is indicative of presence of localized time-dependent
mass ejections. Here, we employ optical interferometry to study the Halpha
line-formation region in these stellar environments. High spatial- (0.001
arcsec) and spectral- (R=30 000) resolution observations of Halpha were
obtained with the visible recombiner VEGA installed on the CHARA
interferometer, using the S1S2 array-baseline (34m). Six independent
observations were done on Deneb over the years 2008 and 2009, and two on Rigel
in 2009. We analyze this dataset with the 1D non-LTE radiative-transfer code
CMFGEN, and assess the impact of the wind on the visible and near-IR
interferometric signatures, using both Balmer-line and continuum photons. We
observe a visibility decrease in Halpha for both Rigel and Deneb, suggesting
that the line-formation region is extended (1.5-1.75 R*). We observe a
significant visibility decrease for Deneb in the SiII6371 line. We witness time
variations in the differential phase for Deneb, implying an inhomogeneous and
unsteady circumstellar environment, while no such variability is seen in
differential visibilities. Radiative-transfer modeling of Deneb, with allowance
for stellar-wind mass loss, accounts fairly well for the observed decrease in
the Halpha visibility. Based on the observed differential visibilities, we
estimate that the mass-loss rate of Deneb has changed by less than 5%
An investigation of the close environment of beta Cep with the VEGA/CHARA interferometer
High-precision interferometric measurements of pulsating stars help to
characterize their close environment. In 1974, a close companion was discovered
around the pulsating star beta Cep using the speckle interferometry technique
and features at the limit of resolution (20 milli-arcsecond or mas) of the
instrument were mentioned that may be due to circumstellar material. Beta Cep
has a magnetic field that might be responsible for a spherical shell or
ring-like structure around the star as described by the MHD models. Using the
visible recombiner VEGA installed on the CHARA long-baseline interferometer at
Mt. Wilson, we aim to determine the angular diameter of beta Cep and resolve
its close environment with a spatial resolution up to 1 mas level. Medium
spectral resolution (R=6000) observations of beta Cep were secured with the
VEGA instrument over the years 2008 and 2009. These observations were performed
with the S1S2 (30m) and W1W2 (100m) baselines of the array. We investigated
several models to reproduce our observations. A large-scale structure of a few
mas is clearly detected around the star with a typical flux relative
contribution of 0.23 +- 0.02. Our best model is a co-rotational geometrical
thin ring around the star as predicted by magnetically-confined wind shock
models. The ring inner diameter is 8.2 +- 0.8 mas and the width is 0.6 +- 0.7
mas. The orientation of the rotation axis on the plane of the sky is PA = 60 +-
1 deg, while the best fit of the mean angular diameter of beta Cep gives UD[V]
= 0.22 +- 0.05 mas. Our data are compatible with the predicted position of the
close companion of beta Cep. These results bring additional constraints on the
fundamental parameters and on the future MHD and asteroseismological models of
the star.Comment: Paper accepted for publication in A&A (in press
- …