6 research outputs found

    Field Safety Experience with an Autologous Cancer Vaccine in Tumor-Bearing Cats: A Retrospective Study of 117 Cases (2015-2020)

    Get PDF
    OBJECTIVES: The aim of this study was to determine the frequency and severity of adverse events (AEs) reported from use of an adjuvanted whole-cell autologous cancer vaccine in cats with solid tumors under field conditions. METHODS: The case accession database at Torigen Pharmaceuticals was searched to identify client-owned cats that underwent biopsy or surgical resection of their primary tumor, had histologic confirmation of neoplasia and received at least one subcutaneous dose of an adjuvanted whole-cell autologous cancer vaccine. Records were reviewed for any reported AEs. RESULTS: In total, 117 cats met the inclusion criteria and received 422 doses of autologous cancer vaccine. Six (5.1%) cats had seven reported AEs, with the majority of these (85.7%) being characterized as grade 1 or 2 (mild) and resolving without medical intervention. CONCLUSIONS AND RELEVANCE: AEs were infrequent in cats treated with an adjuvanted whole-cell autologous cancer vaccine under typical field use conditions. This form of active cancer immunotherapy appears to be well tolerated by cats and may represent a treatment option for owners who are concerned about AEs associated with chemotherapy or radiotherapy. Additional studies are warranted to determine the efficacy of this form of individualized immunotherapy in cats with solid tumors

    Size-Controlled Iron Oxide Nanoplatforms with Lipidoid-Stabilized Shells for Efficient Magnetic Resonance Imaging-Trackable Lymph Node Targeting and High-Capacity Biomolecule Display

    No full text
    Nanoplatforms for biomolecule delivery to the lymph nodes have attracted considerable interest as vectors for immunotherapy. Core–shell iron oxide nanoparticles are particularly appealing because of their potential as theranostic magnetic resonance imaging (MRI)-trackable vehicles for biomolecule delivery. The key challenge for utilizing iron oxide nanoparticles in this capacity is control of their coating shells to produce particles with predictable size. Size determines both the carrier capacity for biomolecule display and the carrier ability to target the lymph nodes. In this study, we develop a novel coating method to produce core–shell iron oxide nanoparticles with controlled size. We utilize lipidlike molecules to stabilize self-assembled lipid shells on the surface of iron oxide nanocrystals, allowing the formation of consistent coatings on nanocrystals of varying size (10–40 nm). We further demonstrate the feasibility of leveraging the ensuing control of nanocarrier size for optimizing the carrier functionalities. Coated nanoparticles with 10 and 30 nm cores supported biomolecule display at 10-fold and 200-fold higher capacities than previously reported iron oxide nanoparticles, while preserving monodisperse sub-100 nm size populations. In addition, accumulation of the coated nanoparticles in the lymph nodes could be tracked by MRI and at 1 h post injection demonstrated significantly enhanced lymph node targeting. Notably, lymph node targeting was 9–40 folds higher than that for previously reported nanocarriers, likely due to the ability of these nanoparticles to robustly maintain their sub-100 nm size in vivo. This approach can be broadly applicable for rational design of theranostic nanoplatforms for image-monitored immunotherapy
    corecore