78 research outputs found

    Adressierung und Strukturierung von Biomolekülen auf der Nanometer-Skala

    Get PDF
    Im Rahmen dieser Arbeit werden Nanostrukturen aus biologischen Molekülen untersucht, sowie neue Methoden zur Strukturierung biologischer Systeme im nanoskaligen Bereich entwickelt und vorgestellt. Neben selbstorganisierten und enzymatischen Prozessen, wie sie bei der Strukturbildung biologischer Systeme eine wesentliche Rolle spielen, wird insbesondere auch eine neuartige Methode der gerichteten enzymatischen Hydrolyse biologischer Membranen, die eine gezielte Strukturierung im Nanometerbereich ermöglicht, vorgestellt. Vor dem Hintergrund, daß die Natur mit Polynucleinsäuren extrem vielseitige, universell einsetzbare und chemisch sowie molekularbiologisch sehr gut handhabbare molekulare Bausteine für den selbstorganisierten Aufbau hochintegrierter Nanoarchitekturen zur Verfügung stellt, werden ferner die grundlegenden Mechanismen und Kräfte der molekularen Erkennung bei der DNA-Basenpaarung sowie die mechanische Stabilität der DNA- Doppelhelix untersucht. - Durch kraftmikroskopische Untersuchungen an einer binären Mischung aus Dipalmitoyl- Phosphatidylcholin (DPPC) und Diarachidoyl-Phosphatidylcholin (DAPC) konnte erstmals die laterale Struktur von binären Lipidmischungen in Lipiddoppelschichten direkt bestimmt werden. Es konnte gezeigt werden, daß diese biologisch wichtigen Lipide in Lipiddoppelschichten spontan Domänen mit einer chrakteristischen Größe von etwa 10 nm bilden. Ein Vergleich der Ergebnisse der kraftmikroskopischen Untersuchungen mit denen von Neutronendiffraktionsexperimenten zeigte eine hervorragende Übereinstimmung der mit diesen beiden komplementären Techniken bestimmten mittleren Domänenabstände. - Untersuchungen des enzymatischen Abbaus von Lipidmembranen durch das lipolytische Enzym Phospholipase A2 (PLA2) erlaubten erstmals Einblicke in die Aktivität dieser Enzyme auf der Einzelmolekülebene. Es konnte gezeigt werden, daß die Enzymaktivität stark von den physikalischen Eigenschaften der Membran abhängig ist und daß Membranen in der Gel-Phase ausschließlich von Membrandefekten her und entlang der Hauptachsen des Molekülkristalls hydrolysiert werden, während die Hydrolyse flüssigkristalliner Membranen im wesentlichen isotrop verläuft. Die am freien Enzym gewonnenen Erkenntnisse konnten dann in einem nächsten Schritt zur Entwicklung einer neuartigen gerichteten Hydrolyse von Lipidmembranen genutzt werden, bei der mit der Spitze eines Rasterkraftmikroskops gezielt Defekte in kristallin gepackten Membranen induziert werden, und die Membranen dann durch das Enzym an Stellen mit diesen künstlichen Packungsdefekten hydrolysiert wird. Auf diese Weise konnten künstliche Strukturen in festkörpergestützten Membranen mit minimalen Strukturdurchmessern von bis zu 10 nm erzeugt werden. - Mit Hilfe von kraftspektroskopischen Untersuchungen an einzelnen DNA-Molekülen konnte erstmals ein neuartiger kraftinduzierter Schmelzübergang, der je nach Kraftladungsrate, Umgebungsbedingungen und DNA-Sequenz und Topologie zwischen einigen Piconewton (pN) und etwa 300 pN stattfindet, nachgewiesen werden. Durch Variation von Kraftladungsrate, Ionenstärke, Umgebungstemperatur und DNA-Sequenz konnte gezeigt werden, daß die mechanische Energie die unter Gleichgewichtsbedingungen bis zum kraftinduzierten Schmelzen in der DNA-Doppelhelix deponiert werden kann, hervorragend mit der freien Basenpaarungsenthalpie ∆Gbp der entsprechenden DNA- Sequenz unter den jeweiligen Umgebungsbedingungen übereinstimmt. Es konnte gezeigt werden, daß sich mit Hilfe der Temperaturabhängigkeit der mechanischen Stabilität von DNA die thermodynamischen Größen ∆Hbp und ∆Sbp von DNA direkt aus Kraftexperimenten an einzelnen Molekülen bestimmen lassen. Schließlich konnten die Basenpaarungskräfte von DNA erstmals sequenzspezifisch bestimmt werden. Die zum reißverschlußartigen Aufbrechen einer GC-Basenpaarung nötigen Kräfte betragen demnach 20±3 pN, die zum Aufbrechen einer AT-Basenpaarung nötigen Kräfte 9±3 pN. Auch hier konnte eine sehr gute Übereinstimmung der zum Aufbrechen der Basenpaarungen nötigen mechanischen Energie mit der freien Basenpaarungsenthalpie ∆Gbp festgestellt werden

    Uncovering Ultrastructural Defences in Daphnia magna — An Interdisciplinary Approach to Assess the Predator-Induced Fortification of the Carapace

    Get PDF
    The development of structural defences, such as the fortification of shells or exoskeletons, is a widespread strategy to reduce predator attack efficiency. In unpredictable environments these defences may be more pronounced in the presence of a predator. The cladoceran Daphnia magna (Crustacea: Branchiopoda: Cladocera) has been shown to develop a bulky morphotype as an effective inducible morphological defence against the predatory tadpole shrimp Triops cancriformis (Crustacea: Branchiopoda: Notostraca). Mediated by kairomones, the daphnids express an increased body length, width and an elongated tail spine. Here we examined whether these large scale morphological defences are accompanied by additional ultrastructural defences, i.e. a fortification of the exoskeleton. We employed atomic force microscopy (AFM) based nanoindentation experiments to assess the cuticle hardness along with tapping mode AFM imaging to visualise the surface morphology for predator exposed and non-predator exposed daphnids. We used semi-thin sections of the carapace to measure the cuticle thickness, and finally, we used fluorescence microscopy to analyse the diameter of the pillars connecting the two carapace layers. We found that D. magna indeed expresses ultrastructural defences against Triops predation. The cuticle in predator exposed individuals is approximately five times harder and two times thicker than in control daphnids. Moreover, the pillar diameter is significantly increased in predator exposed daphnids. These predator-cue induced changes in the carapace architecture should provide effective protection against being crushed by the predator's mouthparts and may add to the protective effect of bulkiness. This study highlights the potential of interdisciplinary studies to uncover new and relevant aspects even in extensively studied fields of research

    Probing the interaction forces of prostate cancer cells with collagen I and bone marrow derived stem cells on the single cell level.

    Get PDF
    Adhesion of metastasizing prostate carcinoma cells was quantified for two carcinoma model cell lines LNCaP (lymph node-specific) and PC3 (bone marrow-specific). By time-lapse microscopy and force spectroscopy we found PC3 cells to preferentially adhere to bone marrow-derived mesenchymal stem cells (SCP1 cell line). Using atomic force microscopy (AFM) based force spectroscopy, the mechanical pattern of the adhesion to SCP1 cells was characterized for both prostate cancer cell lines and compared to a substrate consisting of pure collagen type I. PC3 cells dissipated more energy (27.6 aJ) during the forced de-adhesion AFM experiments and showed significantly more adhesive and stronger bonds compared to LNCaP cells (20.1 aJ). The characteristic signatures of the detachment force traces revealed that, in contrast to the LNCaP cells, PC3 cells seem to utilize their filopodia in addition to establish adhesive bonds. Taken together, our study clearly demonstrates that PC3 cells have a superior adhesive affinity to bone marrow mesenchymal stem cells, compared to LNCaP. Semi-quantitative PCR on both prostate carcinoma cell lines revealed the expression of two Col-I binding integrin receptors, α1β1 and α2β1 in PC3 cells, suggesting their possible involvement in the specific interaction to the substrates. Further understanding of the exact mechanisms behind this phenomenon might lead to optimized therapeutic applications targeting the metastatic behavior of certain prostate cancer cells towards bone tissue

    Mechanically induced silyl ester cleavage under acidic conditions investigated by AFM-based single-molecule force spectroscopy in the force-ramp mode

    Get PDF
    AFM-based dynamic single-molecule force spectroscopy was used to stretch carboxymethylated amylose (CMA) polymers, which have been covalently tethered between a silanized glass substrate and a silanized AFM tip via acid-catalyzed ester condensation at pH 2.0. Rupture forces were measured as a function of temperature and force loading rate in the force-ramp mode. The data exhibit significant statistical scattering, which is fitted with a maximum likelihood estimation (MLE) algorithm. Bond rupture is described with a Morse potential based Arrhenius kinetics model. The fit yields a bond dissociation energy De = 35 kJ mol−1 and an Arrhenius pre-factor A = 6.6 × 104 s−1. The bond dissociation energy is consistent with previous experiments under identical conditions, where the force-clamp mode was employed. However, the bi-exponential decay kinetics, which the force-clamp results unambiguously revealed, are not evident in the force-ramp data. While it is possible to fit the force-ramp data with a bi-exponential model, the fit parameters differ from the force-clamp experiments. Overall, single-molecule force spectroscopy in the force-ramp mode yields data whose information content is more limited than force-clamp data. It may, however, still be necessary and advantageous to perform force-ramp experiments. The number of successful events is often higher in the force-ramp mode, and competing reaction pathways may make force-clamp experiments impossible

    Decoding Cytoskeleton-Anchored and Non-Anchored Receptors from Single-Cell Adhesion Force Data

    Get PDF
    AbstractComplementary to parameters established for cell-adhesion force curve analysis, we evaluated the slope before a force step together with the distance from the surface at which the step occurs and visualized the result in a two-dimensional density plot. This new tool allows detachment steps of long membrane tethers to be distinguished from shorter jumplike force steps, which are typical for cytoskeleton-anchored bonds. A prostate cancer cell line (PC3) immobilized on an atomic-force-microscopy sensor interacted with three different substrates: collagen-I (Col-I), bovine serum albumin, and a monolayer of bone marrow-derived stem cells (SCP1). To address PC3 cells’ predominant Col-I binding molecules, an antibody-blocking β1-integrin was used. Untreated PC3 cells on Col-I or SCP1 cells, which express Col-I, predominantly showed jumps in their force curves, while PC3 cells on bovine-serum-albumin- and antibody-treated PC3 cells showed long membrane tethers. The probability density plots thus revealed that β1-integrin-specific interactions are predominately anchored to the cytoskeleton, while the nonspecific interactions are mainly membrane-anchored. Experiments with latrunculin-A-treated PC3 cells corroborated these observations. The plots thus reveal details of the anchoring of bonds to the cell and provide a better understanding of receptor-ligand interactions

    Loss of tenomodulin expression is a risk factor for age‐related intervertebral disc degeneration

    Get PDF
    The intervertebral disc (IVD) degeneration is thought to be closely related to ingrowth of new blood vessels. However, the impact of anti-angiogenic factors in the maintenance of IVD avascularity remains unknown. Tenomodulin (Tnmd) is a tendon/ligament-specific marker and anti-angiogenic factor with abundant expression in the IVD. It is still unclear whether Tnmd contributes to the maintenance of IVD homeostasis, acting to inhibit vascular ingrowth into this normally avascular tissue. Herein, we investigated whether IVD degeneration could be induced spontaneously by the absence of Tnmd. Our results showed that Tnmd was expressed in an age-dependent manner primarily in the outer annulus fibrous (OAF) and it was downregulated at 6 months of age corresponding to the early IVD degeneration stage in mice. Tnmd knockout (Tnmd(-)(/)(-)) mice exhibited more rapid progression of age-related IVD degeneration. These signs include smaller collagen fibril diameter, markedly lower compressive stiffness, reduced multiple IVD- and tendon/ligament-related gene expression, induced angiogenesis, and macrophage infiltration in OAF, as well as more hypertrophic-like chondrocytes in the nucleus pulposus. In addition, Tnmd and chondromodulin I (Chm1, the only homologous gene to Tnmd) double knockout (Tnmd(-)(/)(-)Chm1(-)(/)(-)) mice displayed not only accelerated IVD degeneration, but also ectopic bone formation of IVD. Lastly, the absence of Tnmd in OAF-derived cells promoted p65 and matrix metalloproteinases upregulation, and increased migratory capacity of human umbilical vein endothelial cells. In sum, our data provide clear evidences that Tnmd acts as an angiogenic inhibitor in the IVD homeostasis and protects against age-related IVD degeneration. Targeting Tnmd may represent a novel therapeutic strategy for attenuating age-related IVD degeneration

    Three-dimensional self-assembling nanofiber matrix rejuvenates aged/degenerative human tendon stem/progenitor cells

    Get PDF
    The poor healing capacity of tendons is known to worsen in the elderly. During tendon aging and degeneration, endogenous human tendon stem/progenitor cells (hTSPCs) experience profound pathological changes. Here, we explored a rejuvenation strategy for hTSPCs derived from aged/degenerated Achilles tendons (A-TSPCs) by providing three-dimensional (3D) nanofiber hydrogels and comparing them to young/healthy TSPCs (Y-TSPCs). RADA peptide hydrogel has a self-assembling ability, forms a nanofibrous 3D niche and can be further functionalized by adding RGD motifs. Cell survival, apoptosis, and proliferation assays demonstrated that RADA and RADA/RGD hydrogels support A-TSPCs in a comparable manner to Y-TSPCs. Moreover, they rejuvenated ATSPCs to a phenotype similar to that of Y-TSPCs, as evidenced by restored cell morphology and cytoskeletal architecture. Transmission electron, confocal laser scanning and atomic force microscopies demonstrated comparable ultrastructure, surface roughness and elastic modulus of A- and Y-TSPC-loaded hydrogels. Lastly, quantitative PCR revealed similar expression profiles, as well a significant upregulation of genes related to tenogenesis and multipotency. Taken together, the RADA-based hydrogels exert a rejuvenating effect by recapitulating in vitro specific features of the natural microenvironment of human TSPCs, which strongly indicates their potential to direct cell behaviour and overcome the challenge of cell aging and degeneration in tendon repair.D.D. acknowledges the EU Twinning Grant Achilles (H2020- WIDESPREAD-05-2017-Twinning Grant Nr. 810850). H.Y. thanks for the support of China Scholarship Council (CSC Grant Nr. 201606200072). S.K. and H.C-S. acknowledge the financial support for CANTER by the Bavarian State Ministry for Science and Education. The authors thank Daniela Drenkard for valuable technical assistance and Dr. Girish Pattappa for English proof-readin

    Forced exercise-induced osteoarthritis is attenuated in mice lacking the small leucine-rich proteoglycan decorin

    Get PDF
    Objective Interterritorial regions of articular cartilage matrix are rich in decorin, a small leucine-rich proteoglycan and important structural protein, also involved in many signalling events. Decorin sequesters transforming growth factor P (TGFP3), thereby regulating its activity. Here, we analysed whether increased bioavailability of TGF3 in decorin-deficient (Dcn(-/-)) cartilage leads to changes in biomechanical properties and resistance to osteoarthritis (OA). Methods Unchallenged knee cartilage was analysed by atomic force microscopy (AFM) and immunohistochemistry. Active transforming growth factor beta-1 (TGF beta 1) content within cultured chondrocyte supernatants was measured by ELISA. Quantitative realtime (RT)-PCR was used to analyse mRNA expression of glycosaminoglycan (GAG)-modifying enzymes in C28/12 cells following TGFf31 treatment. In addition, OA was induced in Dcn(-/-) and wild-type (WT) mice via forced exercise on a treadmill. Results AFM analysis revealed a strikingly higher compressive stiffness in Dcn(-/-) than in WT cartilage. This was accompanied by increased negative charge and enhanced sulfation of GAG chains, but not by alterations in the levels of collagens or proteoglycan core proteins. In addition, decorin-deficient chondrocytes were shown to release more active TGF beta 1. Increased TGF beta signalling led to enhanced Chstl 1 sulfotransferase expression inducing an increased negative charge density of cartilage matrix. These negative charges might attract more water resulting in augmented compressive stiffness of the tissue. Therefore, decorin-deficient mice developed significantly less OA after forced exercise than WT mice. Conclusions Our study demonstrates that the disruption of decorin -restricted TGF beta signalling leads to higher stiffness of articular cartilage matrix, rendering joints more resistant to OA. Therefore, the loss of an important structural component can improve cartilage homeostasis

    Osteoidosis leads to altered differentiation and function of osteoclasts

    Full text link
    In patients with osteomalacia, a defect in bone mineralization leads to changed characteristics of the bone surface. Considering that the properties of the surrounding matrix influence function and differentiation of cells, we aimed to investigate the effect of osteoidosis on differentiation and function of osteoclasts. Based on osteomalacic bone biopsies, a model for osteoidosis in vitro (OIV) was established. Peripheral blood mononuclear cells were differentiated to osteoclasts on mineralized surfaces (MS) as internal control and on OIV. We observed a significantly reduced number of osteoclasts and surface resorption on OIV. Atomic force microscopy revealed a significant effect of the altered degree of mineralization on surface mechanics and an unmasking of collagen fibres on the surface. Indeed, coating of MS with RGD peptides mimicked the resorption phenotype observed in OIV, suggesting that the altered differentiation of osteoclasts on OIV might be associated with an interaction of the cells with amino acid sequences of unmasked extracellular matrix proteins containing RGD sequences. Transcriptome analysis uncovered a strong significant up-regulation of transmembrane glycoprotein TROP2 in osteoclastic cultures on OIV. TROP2 expression on OIV was also confirmed on the protein level and found on the bone surface of patients with osteomalacia. Taken together, our results show a direct influence of the mineralization state of the extracellular matrix surface on differentiation and function of osteoclasts on this surface which may be important for the pathophysiology of osteomalacia and other bone disorders with changed ratio of osteoid to bone

    Mechanically activated rupture of single covalent bonds: evidence of force induced bond hydrolysis.

    Get PDF
    We have used temperature-dependent single molecule force spectroscopy to stretch covalently anchored carboxymethylated amylose (CMA) polymers attached to an amino-functionalized AFM cantilever. Using an Arrhenius kinetics model based on a Morse potential as a one-dimensional representation of covalent bonds, we have extracted kinetic and structural parameters of the bond rupture process. With 35.5 kJ mol−1, we found a significantly smaller dissociation energy and with 9.0 × 102 s−1 to 3.6 × 103 s−1 also smaller Arrhenius pre-factors than expected for homolytic bond scission. One possible explanation for the severely reduced dissociation energy and Arrhenius pre-factors is the mechanically activated hydrolysis of covalent bonds. Both the carboxylic acid amide and the siloxane bond in the amino-silane surface linker are in principle prone to bond hydrolysis. Scattering, slope and curvature of the scattered data plots indicate that in fact two competing rupture mechanisms are observed
    corecore