60 research outputs found

    STED-FLCS:An Advanced Tool to Reveal Spatiotemporal Heterogeneity of Molecular Membrane Dynamics

    Get PDF
    Heterogeneous diffusion dynamics of molecules play an important role in many cellular signaling events, such as of lipids in plasma membrane bioactivity. However, these dynamics can often only be visualized by single-molecule and super-resolution optical microscopy techniques. Using fluorescence lifetime correlation spectroscopy (FLCS, an extension of fluorescence correlation spectroscopy, FCS) on a super-resolution stimulated emission depletion (STED) microscope, we here extend previous observations of nanoscale lipid dynamics in the plasma membrane of living mammalian cells. STED-FLCS allows an improved determination of spatiotemporal heterogeneity in molecular diffusion and interaction dynamics via a novel gated detection scheme, as demonstrated by a comparison between STED-FLCS and previous conventional STED-FCS recordings on fluorescent phosphoglycerolipid and sphingolipid analogues in the plasma membrane of live mammalian cells. The STED-FLCS data indicate that biophysical and biochemical parameters such as the affinity for molecular complexes strongly change over space and time within a few seconds. Drug treatment for cholesterol depletion or actin cytoskeleton depolymerization not only results in the already previously observed decreased affinity for molecular interactions but also in a slight reduction of the spatiotemporal heterogeneity. STED-FLCS specifically demonstrates a significant improvement over previous gated STED-FCS experiments and with its improved spatial and temporal resolution is a novel tool for investigating how heterogeneities of the cellular plasma membrane may regulate biofunctionality

    Cortical actin networks induce spatio-temporal confinement of phospholipids in the plasma membrane – a minimally invasive investigation by STED-FCS

    Get PDF
    Important discoveries in the last decades have changed our view of the plasma membrane organisation. Specifically, the cortical cytoskeleton has emerged as a key modulator of the lateral diffusion of membrane proteins. Cytoskeleton-dependent compartmentalised lipid diffusion has been proposed, but this concept remains controversial because this phenomenon has thus far only been observed with artefact-prone probes in combination with a single technique: single particle tracking. In this paper, we report the first direct observation of compartmentalised phospholipid diffusion in the plasma membrane of living cells using a minimally invasive, fluorescent dye labelled lipid analogue. These observations were made using optical STED nanoscopy in combination with fluorescence correlation spectroscopy (STED-FCS), a technique which allows the study of membrane dynamics on a sub-millisecond time-scale and with a spatial resolution of down to 40 nm. Specifically, we find that compartmentalised phospholipid diffusion depends on the cortical actin cytoskeleton, and that this constrained diffusion is directly dependent on the F-actin branching nucleator Arp2/3. These findings provide solid evidence that the Arp2/3-dependent cortical actin cytoskeleton plays a pivotal role in the dynamic organisation of the plasma membrane, potentially regulating fundamental cellular processes

    Personality trait development in midlife: exploring the impact of psychological turning points

    Full text link
    This study examined long-term personality trait development in midlife and explored the impact of psychological turning points on personality change. Selfdefined psychological turning points reflect major changes in the ways people think or feel about an important part of their life, such as work, family, and beliefs about themselves and about the world. This study used longitudinal data from the Midlife in the US survey to examine personality trait development in adults aged 40–60 years. The Big Five traits were assessed in 1995 and 2005 by means of self-descriptive adjectives. Seven types of self-identified psychological turning points were obtained in 1995. Results indicated relatively high stability with respect to rankorders and mean-levels of personality traits, and at the same time reliable individual differences in change. This implies that despite the relative stability of personality traits in the overall sample, some individuals show systematic deviations from the sample mean-levels. Psychological turning points in general showed very little influence on personality trait change, although some effects were found for specific types of turning points that warrant further research, such as discovering that a close friend or relative was a much better person than one thought they were

    Visualization of Plasma Membrane Compartmentalization by High-Speed Quantum Dot Tracking

    No full text
    In this study, we have imaged plasma membrane molecules labeled with quantum dots in live cells using a conventional wide-field microscope with high spatial precision at sampling frequencies of 1.75 kHz. Many of the resulting single molecule trajectories are sufficiently long (up to several thousand steps) to allow for robust single trajectory analysis. This analysis indicates that a majority of the investigated molecules are transiently confined in nanoscopic compartments with a mean size of (100–150 nm)<sup>2</sup> for a mean duration of 50–100 ms

    Visualization of Plasma Membrane Compartmentalization by High-Speed Quantum Dot Tracking

    No full text
    In this study, we have imaged plasma membrane molecules labeled with quantum dots in live cells using a conventional wide-field microscope with high spatial precision at sampling frequencies of 1.75 kHz. Many of the resulting single molecule trajectories are sufficiently long (up to several thousand steps) to allow for robust single trajectory analysis. This analysis indicates that a majority of the investigated molecules are transiently confined in nanoscopic compartments with a mean size of (100–150 nm)<sup>2</sup> for a mean duration of 50–100 ms
    • …
    corecore