1,119 research outputs found
The regulation of Hox gene expression during animal development
Hox genes encode a family of transcriptional regulators that elicit distinct developmental programmes along the head-to-tail axis of animals. The specific regional functions of individual Hox genes largely reflect their restricted expression patterns, the disruption of which can lead to developmental defects and disease. Here, we examine the spectrum of molecular mechanisms controlling Hox gene expression in model vertebrates and invertebrates and find that a diverse range of mechanisms, including nuclear dynamics, RNA processing, microRNA and translational regulation, all concur to control Hox gene outputs. We propose that this complex multi-tiered regulation might contribute to the robustness of Hox expression during development
A Hox gene mutation that triggers Nonsense-mediated RNA decay and affects alternative splicing during Drosophila development
Nonsense mutations are usually assumed to affect protein function by generating truncated protein products. Nonetheless, it is now clear that these mutations affect not just protein synthesis but also messenger RNA stability. The surveillance mechanism responsible for the detection and degradation of 'nonsense' RNA messages is termed nonsense-mediated RNA decay (NMD). Essential biochemical components of the NMD machinery have been defined in several species. Here we identify the Drosophila orthologue of one of these factors, Upf1, and document its expression during embryogenesis. To test whether NMD acts during Drosophila development, we make use of a mutation that introduces a stop codon into a variably spliced exon of the Hox gene Ultrabithorax (Ubx). Using real-time quantitative RT-PCR we demonstrate that Ubx transcripts containing the premature stop codon are expressed at lower levels than their wild type counterpart. Unexpectedly, we also find that the same mutation significantly increases the levels of a Ubx splicing isoform that lacks the exon containing the premature termination codon. These findings indicate that NMD is operational during Drosophila development and suggest that nonsense mutations may affect development by altering the spectrum of splicing products formed, as well as by reducing or eliminating protein synthesis
The bristle patterning genes hairy and extramacrochaetae regulate the development of structures required for flight in Diptera.
The distribution of sensory bristles on the thorax of Diptera (true flies) provides a useful model for the study of the evolution of spatial patterns. Large bristles called macrochaetes are arranged into species-specific stereotypical patterns determined via spatially discrete expression of the proneural genes achaete-scute (ac-sc). In Drosophila ac-sc expression is regulated by transcriptional activation at sites where bristle precursors develop and by repression outside of these sites. Three genes, extramacrochaetae (emc), hairy (h) and stripe (sr), involved in repression have been documented. Here we demonstrate that in Drosophila, the repressor genes emc and h, like sr, play an essential role in the development of structures forming part of the flight apparatus. In addition we find that, in Calliphora vicina a species diverged from D. melanogaster by about 100 Myr, spatial expression of emc, h and sr is conserved at the location of development of those structures. Based on these findings we argue, first, that the role emc, h and sr in development of the flight apparatus preceded their activities for macrochaete patterning; second, that species-specific variation in activation and repression of ac-sc expression is evolving in parallel to establish a unique distribution of macrochaetes in each species
A visual embedding for the unsupervised extraction of abstract semantics
Vector-space word representations obtained from neural network models have been shown to enable semantic operations based on vector arithmetic. In this paper, we explore the existence of similar information on vector representations of images. For that purpose we define a methodology to obtain large, sparse vector representations of image classes, and generate vectors through the state-of-the-art deep learning architecture GoogLeNet for 20 K images obtained from ImageNet. We first evaluate the resultant vector-space semantics through its correlation with WordNet distances, and find vector distances to be strongly correlated with linguistic semantics. We then explore the location of images within the vector space, finding elements close in WordNet to be clustered together, regardless of significant visual variances (e.g., 118 dog types). More surprisingly, we find that the space unsupervisedly separates complex classes without prior knowledge (e.g., living things). Afterwards, we consider vector arithmetics. Although we are unable to obtain meaningful results on this regard, we discuss the various problem we encountered, and how we consider to solve them. Finally, we discuss the impact of our research for cognitive systems, focusing on the role of the architecture being used.This work is partially supported by the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051), and by the Core Research for Evolutional Science and Technology (CREST) program of Japan Science and Technology Agency (JST).Peer ReviewedPostprint (published version
Identification and characterization of novel factors that act in the nonsense-mediated mRNA decay pathway in nematodes, flies and mammals
Nonsense-mediated mRNA decay (NMD) is a surveillance mechanism that degrades mRNAs harboring premature termination codons (PTCs). We have conducted a genome-wide RNAi screen in Caenorhabditis elegans that resulted in the identification of five novel NMD genes that are conserved throughout evolution. Two of their human homologs, GNL2 (ngp-1) and SEC13 (npp-20), are also required for NMD in human cells. We also show that the C. elegans gene noah-2, which is present in Drosophila melanogaster but absent in humans, is an NMD factor in fruit flies. Altogether, these data identify novel NMD factors that are conserved throughout evolution, highlighting the complexity of the NMD pathway and
suggesting that yet uncovered novel factors may act to regulate this process
Genome-wide analysis of mRNA decay patterns during early Drosophila development.
RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.BACKGROUND: The modulation of mRNA levels across tissues and time is key for the establishment and operation of the developmental programs that transform the fertilized egg into a fully formed embryo. Although the developmental mechanisms leading to differential mRNA synthesis are heavily investigated, comparatively little attention is given to the processes of mRNA degradation and how these relate to the molecular programs controlling development. RESULTS: Here we combine timed collection of Drosophila embryos and unfertilized eggs with genome-wide microarray technology to determine the degradation patterns of all mRNAs present during early fruit fly development. Our work studies the kinetics of mRNA decay, the contributions of maternally and zygotically encoded factors to mRNA degradation, and the ways in which mRNA decay profiles relate to gene function, mRNA localization patterns, translation rates and protein turnover. We also detect cis-regulatory sequences enriched in transcripts with common degradation patterns and propose several proteins and microRNAs as developmental regulators of mRNA decay during early fruit fly development. Finally, we experimentally validate the effects of a subset of cis-regulatory sequences and trans-regulators in vivo. CONCLUSIONS: Our work advances the current understanding of the processes controlling mRNA degradation during early Drosophila development, taking us one step closer to the understanding of mRNA decay processes in all animals. Our data also provide a valuable resource for further experimental and computational studies investigating the process of mRNA decay
Recommended from our members
MicroRNA-dependent control of sensory neuron function regulates posture behavior in Drosophila
All what we see, touch, hear, taste, or smell must first be detected by the sensory elements of our nervous system. Sensory neurons, therefore, represent a critical component in all neural circuits and their correct function is essential for the generation of behavior and adaptation to the environment. Here, we report that the evolutionarily-conserved microRNA (miRNA) miR-263b plays a key behavioral role in Drosophila melanogaster through effects on the function of larval sensory neurons. Several independent experiments (in 50:50 male:female populations) support this finding: First, miRNA expression analysis, via reporter expression and fluorescent-activated cell sorting (FACS)-quantitative PCR (qPCR) analysis, demonstrate miR- 263b expression in larval sensory neurons. Second, behavioral tests in miR-263b null mutants show defects in self-righting, an innate and evolutionarily conserved posture-control behavior that allows larvae to rectify their position if turned upsidedown. Third, competitive inhibition of miR-263b in sensory neurons using a miR-263b "sponge"leads to self-righting defects. Fourth, systematic analysis of sensory neurons in miR-263b mutants shows no detectable morphologic defects in their stereotypic pattern, while genetically-encoded calcium sensors expressed in the sensory domain reveal a reduction in neural activity in miR-263b mutants. Fifth, miR-263b null mutants show reduced "touch-response"behavior and a compromised response to sound, both characteristic of larval sensory deficits. Furthermore, bioinformatic miRNA target analysis, gene expression assays, and behavioral phenocopy experiments suggest that miR-263b might exert its effects, at least in part, through repression of the basic helix-loop-helix (bHLH) transcription factor Atonal. Altogether, our study suggests a model in which miRNA-dependent control of transcription factor expression affects sensory function and behavior
Structure of a 30S pre-initiation complex stalled by GE81112 reveals structural parallels in bacterial and eukaryotic protein synthesis initiation pathways
In bacteria, the start site and the reading frame of the messenger RNA are selected by the small ribosomal subunit (30S) when the start codon, typically an AUG, is decoded in the P-site by the initiator tRNA in a process guided and controlled by three initiation factors. This process can be efficiently inhibited by GE81112, a natural tetrapeptide antibiotic that is highly specific toward bacteria. Here GE81112 was used to stabilize the 30S pre-initiation complex and obtain its structure by cryo-electron microscopy. The results obtained reveal the occurrence of changes in both the ribosome conformation and initiator tRNA position that may play a critical role in controlling translational fidelity. Furthermore, the structure highlights similarities with the early steps of initiation in eukaryotes suggesting that shared structural features guide initiation in all kingdoms of life
A novel post-developmental role of the Hox genes underlies normal adult behavior
The molecular mechanisms underlying the stability of mature neurons and neural circuits are poorly understood. Here we explore this problem and discover that the Hox genes are a component of the genetic program that maintains normal neural function in adult Drosophila. We show that post-developmental downregulation of the Hox gene Ultrabithorax (Ubx) in adult neurons leads to substantial anomalies in flight. Mapping the cellular basis of these effects reveals that Ubx is required within a subset of dopaminergic neurons, and cell circuitry analyses in combination with optogenetics allow us to link these dopaminergic neurons to flight control. Functional imaging experiments show that Ubx is necessary for normal dopaminergic activity, and neuron-specific RNA-sequencing defines two previously uncharacterized ion channel-encoding genes as potential mediators of Ubx behavioral roles. Our study thus reveals a novel role of the Hox system in controlling adult behavior and neural function. Based on the broad evolutionary conservation of the Hox system across distantly related animal phyla, we predict that the Hox genes might play neurophysiological roles in adult forms of other species, including humans
- …