231 research outputs found

    Speeding up the solution of the Bethe-Salpeter equation by a double-grid method and Wannier interpolation

    Full text link
    The Bethe-Salpeter equation is a widely used approach to describe optical excitations in bulk semiconductors. It leads to spectra that are in very good agreement with experiment, but the price to pay for such accuracy is a very high computational burden. One of the main bottlenecks is the large number of k-points required to obtain converged spectra. In order to circumvent this problem we propose a strategy to solve the Bethe-Salpeter equation based on a double-grid technique coupled to a Wannier interpolation of the Kohn-Sham band structure. This strategy is then benchmarked for a particularly difficult case, the calculation of the absorption spectrum of GaAs, and for the well studied case of Si. The considerable gains observed in these cases fully validate our approach, and open the way for the application of the Bethe-Salpeter equation to large and complex systems.Comment: 5 pages, 3 figures. Accepted for Phys. Rev.

    Modelling the positioning of single needle electrodes for the treatment of breast cancer in a clinical case

    Get PDF
    Background: Breast cancer is the most common cancer in women worldwide and is the second most common cause of cancer death in women. Electrochemotherapy (ECT) used in early-phase clinical trials for the treatment of primary breast cancer resulted in a not complete tumor necrosis in most cases. The present study was undertaken to analyze the feasibility to use ECT to treat patients with histologically proven unifocal ductal breast cancer. In particular, results of ECT treatment in a clinical case are compared with the ones of a simplified 3D dosimetric model. Methods: This clinical study was conducted with the pulse generator Cliniporator Vitae (IGEA, Carpi, Italy). ECT procedures were performed according to ESOPE standard operating procedures. Five single needle electrodes were used with one positioned in the center of the tumor, and the other four distributed around the nodule. Histological images of the resected tumor are compared with the maps of the electric field obtained with a simplified 3D model in Comsol Multiphysics v 4.3. Results: The results of the clinical case demonstrated a reduced efficacy of the ECT treatment described. The proposed simple numerical model of the breast tumor located in a low conductive tissue suggests that this is due to the reduced electric field induced inside the tumor with such 5 electrodes placement. However, where the electric field is predicted higher than the reversible electroporation threshold (E > 400 V/cm), also the histological images confirm the necrosis of the target with a good agreement between the modeled and clinical results. Conclusions: The results suggest the dependence of the effectiveness of the treatment on the careful placement of the electrodes. A detailed planned procedure for the tumor analysis after the treatment is also needed in order to better correlate the single electrode positions and the histological images. Simulation models could be used to identify better electrodes configuration in planning the experimental protocol for ECT treatment of breast tumors

    The interplay between models and observations

    Get PDF
    We propose a formal framework to examine the relationship between models and observations. To make our analysis precise, models are reduced to first-order theories that represent both terminological knowledge-e.g., the laws that are supposed to regulate the domain under analysis and that allow for explanations, predictions, and simulations-and assertional knowledge-e.g., information about specific entities in the domain of interest. Observations are introduced into the domain of quantification of a distinct first-order theory that describes their nature and their organization and takes track of the way they are experimentally acquired or intentionally elaborated. A model mainly represents the theoretical knowledge or hypotheses on a domain, while the theory of observations mainly represents the empirical knowledge and the given experimental practices. We propose a precise identity criterion for observations and we explore different links between models and observations by assuming a degree of independence between them. By exploiting some techniques developed in the field of social choice theory and judgment aggregation, we sketch some strategies to solve inconsistencies between a given set of observations and the assumed theoretical hypotheses. The solutions of these inconsistencies can impact both the observations-e.g., the theoretical knowledge and the analysis of the way observations are collected or produced may highlight some unreliable sources-and the models-e.g., empirical evidences may invalidate some theoretical law

    Pomegranate juice reduces oxidized low-density lipoprotein downregulation of endothelial nitric oxide synthase in human coronary endothelial cells

    Get PDF
    We examined the hypothesis that pomegranate juice (PJ) can revert the potent downregulation of the expression of endothelial nitric-oxide synthase (NOSIII) induced by oxidized low-density liporotein (oxLDL) in human coronary endothelial cells. Western blot and Northern blot analyses showed a significant decrease of NOSIII expression after a 24-h treatment with oxLDL. Accordingly, we observed a significant dose-dependent reduction in nitric oxide bioactivity represented by both basal and bradykinin-stimulated cellular cGMP accumulation. These phenomena were corrected significantly by the concomitant treatment with PJ. Our data suggest that PJ can exert beneficial effects on the evolution of clinical vascular complications, coronary heart disease, and atherogenesis in humans by enhancing the NOSIII bioactivity

    Optical properties of Cu-chalcogenide photovoltaic absorbers from self-consistent GW and the Bethe-Salpeter equation

    No full text
    International audienceSelf-consistent GW calculations and the solution of the Bethe-Salpeter equation are to date the best available approaches to simulate electronic excitations in a vast class of materials, ranging from molecules to solids. However, up to now numerical instabilities made it impossible to use these techniques to calculate optical absorption spectra of the best-known thin-film absorbers for solar cells: Cu(In,Ga)(S,Se) 2 chalcopyrites and Cu 2 ZnSn(S,Se) 4 kesterites/stannites. We show here how to solve this problem using a finite-difference method in k space to evaluate the otherwise diverging dipole matrix elements, obtaining an excellent agreement with experiments. Having established the validity of this approach, we use it then to calculate the optical response of the less studied, but promising, Cu 2 ZnGe(S,Se) 4 compounds, opening the way to predictive calculations of still unknown materials

    How Dual-Energy Contrast-Enhanced Spectral Mammography Can Provide Useful Clinical Information About Prognostic Factors in Breast Cancer Patients: A Systematic Review of Literature

    Get PDF
    Introduction: In the past decade, a new technique derived from full-field digital mammography has been developed, named contrast-enhanced spectral mammography (CESM). The aim of this study was to define the association between CESM findings and usual prognostic factors, such as estrogen receptors, progesterone receptors, HER2, and Ki67, in order to offer an updated overview of the state of the art for the early differential diagnosis of breast cancer and following personalized treatments. Materials and methods: According to the PRISMA guidelines, two electronic databases (PubMed and Scopus) were investigated, using the following keywords: breast cancer AND (CESM OR contrast enhanced spectral mammography OR contrast enhanced dual energy mammography) AND (receptors OR prognostic factors OR HER2 OR progesterone OR estrogen OR Ki67). The search was concluded in August 2021. No restriction was applied to publication dates. Results: We obtained 28 articles from the research in PubMed and 114 articles from Scopus. After the removal of six replicas that were counted only once, out of 136 articles, 37 articles were reviews. Eight articles alone have tackled the relation between CESM imaging and ER, PR, HER2, and Ki67. When comparing radiological characterization of the lesions obtained by either CESM or contrast-enhanced MRI, they have a similar association with the proliferation of tumoral cells, as expressed by Ki-67. In CESM-enhanced lesions, the expression was found to be 100% for ER and 77.4% for PR, while moderate or high HER2 positivity was found in lesions with non-mass enhancement and with mass closely associated with a non-mass enhancement component. Conversely, the non-enhancing breast cancer lesions were not associated with any prognostic factor, such as ER, PR, HER2, and Ki67, which may be associated with the probability of showing enhancement. Radiomics on CESM images has the potential for non-invasive characterization of potentially heterogeneous tumors with different hormone receptor status. Conclusions: CESM enhancement is associated with the proliferation of tumoral cells, as well as to the expression of estrogen and progesterone receptors. As CESM is a relatively young imaging technique, a few related works were found; this may be due to the "off-label" modality. In the next few years, the role of CESM in breast cancer diagnostics will be more thoroughly investigated

    Sensitive Detection and Quantification of Anisakid Parasite Residues in Food Products

    Get PDF
    Anisakids are nematodes whose larval stages are often present in fish, molluscs, and crustaceans. Members of the family Anisakidae belonging to the genera Anisakis and Pseudoterranova are implicated in human infections caused by the consumption of raw or undercooked fish. Adequate cooking will kill anisakid larvae, however, killed or inactivated larvae can still cause sensitization and immunoglobulin E-dependent hypersensitivity in human. This work describes the development of DNA-based tests to detect and quantify the presence of Anisakis spp. and Pseudoterranova spp. larvae in fish and fish-derived products, including fish fillets, surimi, fish sticks, canned fish, and baby food. Primers and TaqMan MGB probes recognizing only Anisakis spp. and Pseudoterranova spp. were designed on the first internal transcribed spacer 1 regions of rDNA for a real-time polymerase chain reaction assay. A commercial probe for 18S rDNA was used to detect and quantify the total eukaryotic DNA of the samples. The specificity and sensitivity of the assays were tested using reference samples prepared from mixtures made of Anisakis larvae in different quantity of codfish, and subsequent dilutions. Studies were performed to assess the ability of the test to detect and quantify anisakids in various products. Results showed that this test is able to detect anisakid DNA contained in a proportion of 1:10(5) in 1 ng of total DNA. The high prevalence of anisakids reported in main fishery species was confirmed by frequently detecting anisakids DNA in fish muscle and fish-derived products. A partial correlation was found between the number of larvae present in the viscera and the level of contamination of fish fillets. In conclusion, this molecular test is useful to detect the presence of Anisakis spp. and Pseudoterranova spp. in fish and fish-derived products and to quantify the level of contamination along the food chain, with potential applications for fish farms, fish markets, and food producers

    Rewiring innate and adaptive immunity with TLR9 agonist to treat osteosarcoma

    Get PDF
    Background Osteosarcoma (OS) is the most common primary bone tumor in children and adolescent. Surgery and multidrug chemotherapy are the standard of treatment achieving 60-70% of event-free survival for localized disease at diagnosis. However, for metastatic disease, the prognosis is dismal. Exploiting immune system activation in the setting of such unfavorable mesenchymal tumors represents a new therapeutic challenge. Methods In immune competent OS mouse models bearing two contralateral lesions, we tested the efficacy of intralesional administration of a TLR9 agonist against the treated and not treated contralateral lesion evaluating abscopal effect. Multiparametric flow cytometry was used to evaluate changes of the tumor immune microenviroment. Experiments in immune- deficient mice allowed the investigation of the role of adaptive T cells in TLR9 agonist effects, while T cell receptor sequencing was used to assess the expansion of specific T cell clones. Results TLR9 agonist strongly impaired the growth of locally-treated tumors and its therapeutic effect also extended to the contralateral, untreated lesion. Multiparametric flow cytometry showed conspicuous changes in the immune landscape of the OS immune microenvironment upon TLR9 engagement, involving a reduction in M2-like macrophages, paralleled by increased infiltration of dendritic cells and activated CD8 T cells in both lesions. Remarkably, CD8 T cells were needed for the induction of the abscopal effect, whereas they were not strictly necessary for halting the growth of the treated lesion. T cell receptor (TCR) sequencing of tumor infiltrating CD8 T cells showed the expansion of specific TCR clones in the treated tumors and, remarkably, their selected representation in the contralateral untreated lesions, providing the first evidence of the rewiring of tumor-associated T cell clonal architectures. Conclusions Overall these data indicate that the TLR9 agonist acts as an in situ anti-tumor vaccine, activating an innate immune response sufficient to suppress local tumor growth while inducing a systemic adaptive immunity with selective expansion of CD8 T cell clones, which are needed for the abscopal effect

    Osteopontin shapes immunosuppression in the metastatic niche.

    Get PDF
    The matricellular protein osteopontin (OPN, Spp-1) is widely associated with cancer aggressiveness when produced by tumor cells, but its impact is uncertain when produced by leukocytes in the context of the tumor stroma. In a broad study using Spp1(-/-) mice along with gene silencing in tumor cells, we obtained evidence of distinct and common activities of OPN when produced by tumor or host cells in a spontaneously metastatic model of breast cancer. Different cellular localization of OPN is associated with its distinct activities, being mainly secreted in tumor cells while intracellular in myeloid cells. OPN produced by tumor cells supported their survival in the blood stream, whereas both tumor- and host-derived OPN, particularly from myeloid cells, rendered the metastatic site more immunosuppressive. Myeloid-derived suppressor cells (MDSC) expanded with tumor progression at both primary and lung metastatic sites. Of the expanded monocytic and granulocytic cell populations of MDSCs, the monocytic subset was the predominant source of OPN. In Spp1(-/-) mice, the inhibition of lung metastases correlated with the expansion of granulocyte-oriented MDSCs. Notably, monocytic MDSCs in Spp1(-/-) mice were less suppressive than their wild-type counterparts due to lower expression of arginase-1, IL6, and phospho-Stat3. Moreover, fewer regulatory T cells accumulated at the metastatic site in Spp1(-/-) mice. Our data find correlation with lung metastases of human mammary carcinomas that are associated with myeloid cells expressing OPN. Overall, our results unveiled novel functions for OPN in shaping local immunosuppression in the lung metastatic niche
    corecore