31 research outputs found
Two decades of inorganic carbon dynamics along the West Antarctic Peninsula
© The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 12 (2015): 6761-6779, doi:10.5194/bg-12-6761-2015.We present 20 years of seawater inorganic carbon measurements collected along the western shelf and slope of the Antarctic Peninsula. Water column observations from summertime cruises and seasonal surface underway pCO2 measurements provide unique insights into the spatial, seasonal, and interannual variability in this dynamic system. Discrete measurements from depths > 2000 m align well with World Ocean Circulation Experiment observations across the time series and underline the consistency of the data set. Surface total alkalinity and dissolved inorganic carbon data showed large spatial gradients, with a concomitant wide range of Ωarag (< 1 up to 3.9). This spatial variability was mainly driven by increasing influence of biological productivity towards the southern end of the sampling grid and meltwater input along the coast towards the northern end. Large inorganic carbon drawdown through biological production in summer caused high near-shore Ωarag despite glacial and sea-ice meltwater input. In support of previous studies, we observed Redfield behavior of regional C / N nutrient utilization, while the C / P (80.5 ± 2.5) and N / P (11.7 ± 0.3) molar ratios were significantly lower than the Redfield elemental stoichiometric values. Seasonal salinity-based predictions of Ωarag suggest that surface waters remained mostly supersaturated with regard to aragonite throughout the study. However, more than 20 % of the predictions for winters and springs between 1999 and 2013 resulted in Ωarag < 1.2. Such low levels of Ωarag may have implications for important organisms such as pteropods. Even though we did not detect any statistically significant long-term trends, the combination of on\-going ocean acidification and freshwater input may soon induce more unfavorable conditions than the ecosystem experiences today.We gladly acknowledge support from the National Science
Foundation Polar Programs (NSF OPP-90-11927, OPP-96-32763,
OPP-02-17282, OPP-08-23101, and PLR-1440435). T. Takahashi
and the Ship of Opportunity Observation Program (SOOP) were
supported by a grant (NA10OAR4320143) from the United States
NOAA
Recommended from our members
Wind-driven mixing causes a reduction in the strength of the continental shelf carbon pump in the Chukchi Sea
The Chukchi Sea is thought to be a globally important sink of atmospheric CO2 due to the summertime drawdown of surface pCO2 by phytoplankton and subsequent shelf-to-basin transport of CO2-enriched subsurface waters into the upper halocline of the Arctic Ocean. Here we show that annually occurring storm-induced mixing events during autumn months disrupt water column stratification and stir up remineralized carbon from subsurface waters to the surface, leading to CO2 outgassing to the atmosphere. Our analysis provides a new understanding of the dynamics of carbon cycling in the region and suggests that late season wind events are strong and frequent enough to significantly decrease the carbon sink strength of the Chukchi Sea on a scale of relevance to the global carbon cycle. These results highlight the importance of obtaining data with more complete seasonal and spatial coverage in order to accurately constrain regional to basin-scale carbon flux budgets
Understanding, characterizing, and communicating responses to ocean acidification : challenges and uncertainties
Author Posting. © The Oceanography Society, 2015. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 28, no. 2 (2015): 30-39, doi:10.5670/oceanog.2015.29.Over the past decade, ocean acidification (OA) has emerged as a major concern in ocean science. The field of OA is based on certaintiesâuptake of carbon dioxide into the global ocean alters its carbon chemistry, and many marine organisms, especially calcifiers, are sensitive to this change. However, the field must accommodate uncertainties about the seriousness of these impacts as it synthesizes and draws conclusions from multiple disciplines. There is pressure from stakeholders to expeditiously inform society about the extent to which OA will impact marine ecosystems and the people who depend on them. Ultimately, decisions about actions related to OA require evaluating risks about the likelihood and magnitude of these impacts. As the scientific literature accumulates, some of the uncertainty related to single-species sensitivity to OA is diminishing. Difficulties remain in scaling laboratory results to species and ecosystem responses in nature, though modeling exercises provide useful insight. As recognition of OA grows, scientistsâ ability to communicate the certainties and uncertainties of our knowledge on OA is crucial for interaction with decision makers. In this regard, there are a number of valuable practices that can be drawn from other fields, especially the global climate change community. A generally accepted set of best practices that scientists follow in their discussions of uncertainty would be helpful for the community engaged in ocean acidification.NOAA Ocean
Acidification Program and National Marine Fisheries
Service (DSB, MP), NSF-supported Center for Climate
and Energy Decision Making (SCD), and NASA Ocean
Biology and Biogeochemistry Program (SS)
Recommended from our members
Wind-driven mixing causes a reduction in the strength of the continental shelf carbon pump in the Chukchi Sea
The Chukchi Sea is thought to be a globally important sink of atmospheric COâ due to the summertime drawdown of surface pCOâ by phytoplankton and subsequent shelf-to-basin transport of COâ-enriched subsurface waters into the upper halocline of the Arctic Ocean. Here we show that annually occurring storm-induced mixing events during autumn months disrupt water column stratification and stir up remineralized carbon from subsurface waters to the surface, leading to COâ outgassing to the atmosphere. Our analysis provides a new understanding of the dynamics of carbon cycling in the region and suggests that late season wind events are strong and frequent enough to significantly decrease the carbon sink strength of the Chukchi Sea on a scale of relevance to the global carbon cycle. These results highlight the importance of obtaining data with more complete seasonal and spatial coverage in order to accurately constrain regional to basin-scale carbon flux budgets.Keywords: COâ flux, Vertical mixing, Remineralization, Chukchi Sea, Carbon dioxid
Chemical and Physical Environmental Conditions Underneath Mat- and Canopy-Forming Macroalgae, and Their Effects on Understorey Corals
Disturbed coral reefs are often dominated by dense mat- or canopy-forming assemblages of macroalgae. This study investigated how such dense macroalgal assemblages change the chemical and physical microenvironment for understorey corals, and how the altered environmental conditions affect the physiological performance of corals. Field measurements were conducted on macroalgal-dominated inshore reefs in the Great Barrier Reef in quadrats with macroalgal biomass ranging from 235 to 1029 g DW mâ2 dry weight. Underneath mat-forming assemblages, the mean concentration of dissolved oxygen was reduced by 26% and irradiance by 96% compared with conditions above the mat, while concentrations of dissolved organic carbon and soluble reactive phosphorous increased by 26% and 267%, respectively. The difference was significant but less pronounced under canopy-forming assemblages. Dissolved oxygen declined and dissolved inorganic carbon and alkalinity increased with increasing algal biomass underneath mat-forming but not under canopy-forming assemblages. The responses of corals to conditions similar to those found underneath algal assemblages were investigated in an aquarium experiment. Coral nubbins of the species Acropora millepora showed reduced photosynthetic yields and increased RNA/DNA ratios when exposed to conditions simulating those underneath assemblages (pre-incubating seawater with macroalgae, and shading). The magnitude of these stress responses increased with increasing proportion of pre-incubated algal water. Our study shows that mat-forming and, to a lesser extent, canopy-forming macroalgal assemblages alter the physical and chemical microenvironment sufficiently to directly and detrimentally affect the metabolism of corals, potentially impeding reef recovery from algal to coral-dominated states after disturbance. Macroalgal dominance on coral reefs therefore simultaneously represents a consequence and cause of coral reef degradation
Ocean acidification in the California Current System
Eastern boundary upwelling systems (EBUS) are naturally more acidic than most of the rest of the surface ocean. Observations of EBUS already show pH values and saturation states with regard to the carbonate mineral aragonite that are as low as those expected for most open ocean waters several decades from now. Thus, as atmospheric CO2 increases further, EBUS are prone to widespread and persistent undersaturation with regard to aragonite, making them especially sensitive to ocean acidification. Here, we describe ocean carbonate chemistry and its short-term-to-seasonal variability in one major EBUS, the California Current System (CCS), based on observations and results from an eddy-resolving regional model. Results reveal high variability in ocean carbonate chemistry, largely driven by seasonal upwelling of waters with low pH and saturation states, and subsequent interactions of transport and biological production. Model simulations confirm that the pH of CCS waters has decreased by about 0.1 pH unit and by 0.5 in saturation state since pre-industrial times. A first assessment of the vulnerability of CCS marine organisms and ecosystems to ocean acidification suggests that there will be winners and losers, likely provoking changes in species composition. Benthic organisms appear to be among those that will be most affected by the continuing acidification of the CCS. More accurate projections require special consideration of the integrated effects of ocean acidification, ocean warming, decreasing oxygen levels, and other processes that are expected with global change
Recommended from our members
Sudden emergence of a shallow aragonite saturation horizon in the Southern Ocean
Models project that with current CO2 emission rates, the Southern Ocean surface will be undersaturated with respect to aragonite by the end of this century(1-4). This will result in widespread impacts on biogeochemistry and ocean ecosystems(5-7), particularly the health of aragonitic organisms, such as pteropods(7), which can dominate polar surface water communities(6). Here, we quantify the depth of the present-day Southern Ocean aragonite saturation horizon using hydrographic and ocean carbon chemistry observations, and use a large ensemble of simulations from the Community Earth System Model (CESM)(8,9) to track its evolution. A new, shallow aragonite saturation horizon emerges in many Southern Ocean locations between now and the end of the century. While all ensemble members capture the emergence, internal climate variability may affect the year of emergence; thus, its detection may have been overlooked by ensemble average analysis in the past. The emergence of the new horizon is driven by the slow accumulation of anthropogenic CO2 in the Southern Ocean thermocline, where the carbonate ion concentration exhibits a local minimum and approaches undersaturation. The new horizon is also apparent under an emission-stabilizing scenario indicating an inevitable, sudden decrease in the volume of suitable habitat for aragonitic organisms