8 research outputs found
Transformação genética em espécies florestais.
Volume growth of pau-ferro trees (Astronium balansae) of a native forest and a twelve-years old plantation was studied using stem analysis technique. Analysis of cross-sectional discs allowed only to quantify the growth of the plantation trees because it was not possible to identify the tree rings in the native forest cross-sections. Growth data was modeled with a stepwise regression procedure which resulted in equations of high precision and good fit to describe the mean and current annual increment of a tree from the dominant and another from the dominated stratum. It was not possible to detect the point of maximum increment because of the little age of the trees.A transformação genética, que compreende a introdução de genes exógenos de forma controlada no genoma de uma célula vegetal e posterior regeneração da planta transgênica, tem contribuído com os programas de melhoramento genético de plantas pela obtenção de genótipos com novas características de interesse. O melhoramento de espécies florestais é limitado por características intrínsecas a tais espécies, como a altura dos indivíduos e o ciclo longo de vida. A transformação genética constitui, portanto, uma alternativa para a obtenção de espécies florestais com características desejáveis em um menor espaço de tempo. Plantas transgênicas com resistência a determinadas pragas, com melhor qualidade de madeira, maior produção de biomassa, tolerância a herbicidas, entre outras características de interesse, já foram obtidas para diferentes espécies florestais de importância econômica como álamo, eucalipto e pinheiros em geral. Este trabalho mostra a importância da transformação genética, associada a outras técnicas biotecnológicas no melhoramento de espécies florestais, as técnicas de transformação mais utilizadas e as características que já foram introduzidas nessas espécies pela transformação
Funktionelle Analyse der Rolle des Enzyms Succinyl Coenzym A-Ligase im photosynthetischen Metabolismus der Tomate
Title page,Acknowledgements, Abstract, Zusammenfassung, Table of Contents,
List of Figures, List of Tables, List of Abbreviations
1\. General introduction 1
2\. Materials and Methods 24
2.1. Chemicals 25
2.2. Bacterial and yeast strains 25
2.3. Expression vectors 25
2.4. Transformation and cultivation of bacteria 26
2.5. Complementation, transformation and cultivation of yeast 26
2.6. Yeast mitochondria isolation 27
2.7. DNA manipulation 27
2.8. Plant material 27
2.9. Screening of putative full-length cDNA from the tomato EST collection
28
2.10. Subcloning of selected cDNA from tomato into pENTR vector 29
2.11. Subcellular localisation experiments 30
2.12. Phylogenetic analysis tomato SCoAL α1, α2 and β subunits 32
2.13. Expression analysis tomato SCoAL α1, α2 and β subunits 32
2.14. Analysis of enzyme activities 33
2.14.1. Succinyl CoA ligase enzyme assay 33
2.14.2 Glutamate decarboxylase enzyme assay 34
2.14.3 Glutamate dehydrogenase enzyme assay 34
2.15. Oxygen consumption measurements in yeast 35
2.16. Determination of metabolite levels in tomato leaves 35
2.17. Measurements of photosynthetic parameters 36
2.18. Measurement of respiratory parameters 36
2.19. Microarray 36
2.20. Statistical analysis 37
3\. Molecular cloning of tomato TCA cycle full-length cDNAs and
characterisation of succinyl CoA ligase α and β subunits 38
4\. Phenotypic and metabolic effects in tomato plants with reduced activity
of succinyl CoA ligase 60
5\. General Discussion 92
6\. Bibliography 100Despite the central importance of the TCA cycle in plant metabolism not all of
the genes encoding its constituent enzymes have been functionally identified.
In this work I report the isolation of tomato cDNAs coding for α1- and α2 and
one coding for the β-subunit of succinyl CoA ligase, for E2- and E3-subunits
of 2-oxoglutarate dehydrogenase complex, for iron sulphur-subunit of succinate
dehydrogenase, for E1α and β-subunits of pyruvate dehydrogenase complex, and
for chloroplastic-, cytosolic-, mitochondrial- and glyoxysomal-subunits of
malate dehydrogenase. Emphasis was given to the cDNAs coding for α1- and α2-
and for the β-subunit of succinyl CoA ligase. These three cDNAs were used to
complement the respective Saccharomyces cerevisiae mutants deficient in the
α\- and β-subunit, demonstrating that they encode functionally active
polypeptides. The genes encoding for the subunits were expressed in all plant
organs, but most strongly in flowers and leaves, with the two α-subunit genes
being expressed to equivalent levels in all plant organs. In all instances GFP
fusion expression studies confirmed an expected mitochondrial location of the
proteins encoded. Following the development of a novel assay to measure
succinyl CoA ligase activity, in the direction of succinate formation, the
evaluation of the maximal catalytic activities of the enzyme in a range of
plant organs revealed that these paralleled those of mRNA levels. I also
utilized this assay to perform a preliminary characterisation of the
regulatory properties of the enzyme suggesting allosteric control of this
enzyme may regulate flux through the TCA cycle in a manner consistent with its
position therein. Transgenic tomato (Solanum lycopersicum) plants expressing
the complete coding region of α1- and β-subunit of succinyl CoA ligase
separately in antisense orientation and using the RNAi approach were produced.
Transformants were screened for reduced succinyl CoA ligase activity and
selected lines were used for molecular, biochemical and physiological
characterisation. Transgenic tomato plants harbouring the β-subunit of
succinyl CoA ligase showed an increase in plant high, and a decrease in fruit
production and leaf dry matter, but no change in photosynthetic parameters
(for example CO2 assimilation rate) and about 30% decrease in the respiration
rate. Accumulation of glutamate and γ-aminobutyric acid amino acids in leaves,
and a higher activity of glutamate dehydrogenase and glutamate decarboxylase
in the transformants suggest an alternative route, the GABA shunt which
bypasses the succinyl CoA ligase deficiency and supplies the mitochondria with
succinate to support the respiratory processes. Further analysis of other
steady-state metabolite levels suggests a link between succinyl CoA ligase
activity with other metabolic pathways such as the shikimate and isoprenoid
pathways. It was observed that end products of the shikimate pathway, such as
aromatic amino acids, were increased, as well as tocopherols, chlorophylls and
carotenoids, which are end products of the isoprenoid pathways. Analysis of
transgenic tomato plants displaying reduced expression of α1-subunit of
succinyl CoA ligase performed in parallel with the tomato plants described
above surprisingly did not show similar phenotype as the first plants, most
likely because the selected lines showed not strongly enough decrease in
activity.Trotz der bedeutenden Rolle des Citratzyklus im Stoffwechsel der Pflanze,
wurden bisher nur wenige Enzyme innerhalb dieses Stoffwechselweges näher
charakterisiert. Das Ziel der vorliegenden Arbeit war es daher eben diese
Lücke zu schliessen und die Aktivitäten einiger der relevanten Citratzyklus-
Enzyme genauer zu analysieren. Zu diesem Zweck wurden zunächst die cDNAs, die
fur folgende Enzyme kodieren, aus Tomate isoliert: die α1-, α2 und
β-Untereinheiten des Enzyms Succinyl Coenzym A-Ligase, die E2- und
E3-Untereinheiten des 2-Oxoglutarat Dehydrogenase Komplexes, die Eisen-
Schwefel-Untereinheit der Succinat Dehydrogenase, die E1α-und β-Untereinheiten
des Pyruvat Dehydrogenase Komplexes, und die chloroplastidare-, cytosolische-,
mitochondriale- and glyoxysomale-Untereinheiten der Malat Dehydrogenase. Der
Schwerpunkt der Arbeit lag dann auf der Untersuchung der Funktionen der α1-,
α2 und β-Untereinheiten der Succinyl Coenzym A-Ligase. Diese drei cDNAs wurden
zunächst zur Komplementation von Hefe-Mutanten (Saccharomyces cerevisiae) mit
einem entsprechenden Defekt in der jeweiligen Untereinheit verwendet. Es
konnte somit gezeigt werden, dass die isolierten cDNAs funktionsfähige
Polypeptide kodieren. Hybridisierungexperimente haben im Weiteren ergeben,
dass die Untereinheiten der Succinyl Coenzym A-Ligase in allen pflanzlichen
Organen exprimiert werden. Besonders starke Expression fand man in Blüten und
Blättern, wohingegen die beiden α-Untereinheiten in allen Organen zu gleichen
Teilen exprimiert wurden. Durch die Analyse der Expression der GFP-
fusionierten Untereinheiten konnte weiterhin die erwartete mitochondriale
Lokalisierung der Proteine bestätigt werden. Zur Aktivitätbestimmung des
Enzyms Succinyl Coenzym A-Ligase wurde ein neues Protokoll in Richtung der
Bildung von Succinat entwickelt. Die Auswertung der gemessenen
Enzymeaktivitäten in verschiedenen pflanzlichen Organe ergab, dass diese mit
den Transkriptgehalten der Gene korrelierten. Eine umfassende
Charakterisierung der regulatorischen Eigenschaften des Enzyms konnte
ebenfalls mithilfe des neu entwickelten Enzymassays durchgeführt werden. Dabei
ergaben sich Hinweise auf eine allosterische Kontrolle des Enzyms das den
Fluss durch den Zyklus übereinstimmend mit seiner Position kontrolliert.
Anschliessend wurden verschiedene, genetisch modifizierte Tomatenpflanzen
(Solanum lycopersicum) hergestellt, die die vollständige Kodierungsregion der
α1- und β-Untereinheiten von Succinyl Coenzym A-Ligase einzeln in antisense
Orientierung und als RNAi exprimieren. Einzelne Transformanden dieser Pflanzen
wurden nach ihrer verminderten Enzymaktivität ausgewählt und dann fur
molekulare, biochemische und physiologische Analysen verwendet. Hierbei
zeigten die fur das Gen der β-Untereinheit der Succinyl Coenzym A-Ligase
reprimierten Tomatenpflanzen ein gesteigertes Pflanzenwachstum, eine
verminderte Fruchtproduktion, ein verringertes Trockengewicht der Blätter und
eine ungefähr 30%ige Verminderung der zellulären Atmungsrate. Sie zeigten
jedoch keine Änderung der photosynthetischen Parameter (zum Beispiel CO2
Assimilationsrate). Die Anreicherung an Glutamat und γ-Aminobuttersäure (GABA)
in Blättern, und die Erhöhung der Enzymaktivitäten der Glutamat Dehydrogenase
und der Glutamat Decarboxylase in diesen Pflanzen, weisen somit darauf hin,
dass der "GABA-shunt", als ein alternativer Weg, den Mangel an Succinyl
Coenzym A-Ligase überbrückt und die Mitochondrien mit Succinat beliefert, um
somit die Atmungsprozesse zu sichern. Weiterhin durchgeführte Metaboliten-
Analysen in Blättern, weisen auf eine Verbindung zwischen der Succinyl Coenzym
A-Ligase Enzymaktivität und anderen Stoffwechselwege, wie zum Beispiel dem
Shikimat- und dem Isoprenoidweg, hin. So konnte beobachtet werden, dass
Endprodukte des Shikimatwegs, wie aromatische Aminosäure, als auch
Tocopherol-, Chlorophyll- und Karotenoidemengen des
Isoprenoidstoffwechselweges, erhöht waren. Die Analysen der Tomatenpflanzen
mit verminderter Expression der Succinyl Coenzym A-Ligase α1-Untereinheit, die
parallel durchgeführt wurden, wiesen überraschenderweise, nicht dieselben
Eigenschaften wie die zuvor beschriebenen Transformanden der β-Untereinheit
auf. Es besteht hierbei die Möglichkeit, dass die Verminderung der
Enzymaktivität der ausgewählten Pflanzen nicht stark genug ausgeprägt war
Transformação genética em espécies florestais
Breeding of forest species is limited by intrinsic characteristics such as individuals height and long
life cycle. Plant genetic transformation, the integration of known foreign genes into the plant genome,
represents a less time consuming alternative for the recovery of forest species with desirable traits. This
technology has contributed to plant breeding programs by facilitating the recovery of genotypes containing
novel exciting traits of agricultural importance. Many of them including resistance to insect pests,
improvement of wood quality and biomass production, and tolerance to herbicides have been introduced in
forest species such as poplar, eucalyptus and pine trees using this technology. This review highlights current
transformation methods, and illustrates the importance of finally defining the most important traits that have
already been introduced into these valuable species
Transformação genética em espécies florestais.
Volume growth of pau-ferro trees (Astronium balansae) of a native forest and a twelve-years old plantation was studied using stem analysis technique. Analysis of cross-sectional discs allowed only to quantify the growth of the plantation trees because it was not possible to identify the tree rings in the native forest cross-sections. Growth data was modeled with a stepwise regression procedure which resulted in equations of high precision and good fit to describe the mean and current annual increment of a tree from the dominant and another from the dominated stratum. It was not possible to detect the point of maximum increment because of the little age of the trees.A transformação genética, que compreende a introdução de genes exógenos de forma controlada no genoma de uma célula vegetal e posterior regeneração da planta transgênica, tem contribuído com os programas de melhoramento genético de plantas pela obtenção de genótipos com novas características de interesse. O melhoramento de espécies florestais é limitado por características intrínsecas a tais espécies, como a altura dos indivíduos e o ciclo longo de vida. A transformação genética constitui, portanto, uma alternativa para a obtenção de espécies florestais com características desejáveis em um menor espaço de tempo. Plantas transgênicas com resistência a determinadas pragas, com melhor qualidade de madeira, maior produção de biomassa, tolerância a herbicidas, entre outras características de interesse, já foram obtidas para diferentes espécies florestais de importância econômica como álamo, eucalipto e pinheiros em geral. Este trabalho mostra a importância da transformação genética, associada a outras técnicas biotecnológicas no melhoramento de espécies florestais, as técnicas de transformação mais utilizadas e as características que já foram introduzidas nessas espécies pela transformação
TRANSFORMAÇÃO GENÉTICA EM ESPÉCIES FLORESTAIS
A transformação genética, que compreende a introdução de genes exógenos de forma controlada no genoma de uma célula vegetal e posterior regeneração da planta transgênica, tem contribuído com os programas de melhoramento genético de plantas pela obtenção de genótipos com novas características de interesse. O melhoramento de espécies florestais é limitado por características intrínsecas a tais espécies, como a altura dos indivíduos e o ciclo longo de vida. A transformação genética constitui, portanto, uma alternativa para a obtenção de espécies florestais com características desejáveis em um menor espaço de tempo. Plantas transgênicas com resistência a determinadas pragas, com melhor qualidade de madeira, maior produção de biomassa, tolerância a herbicidas, entre outras características de interesse, já foram obtidas para diferentes espécies florestais de importância econômica como álamo, eucalipto e pinheiros em geral. Este trabalho mostra a importância da transformação genética, associada a outras técnicas biotecnológicas no melhoramento de espécies florestais, as técnicas de transformação mais utilizadas e as características que já foram introduzidas nessas espécies pela transformação
Transformação genética em espécies florestais.
<p>A transformação genética, que compreende a introdução de genes exógenos de forma controlada no genoma de uma célula vegetal e posterior regeneração da planta transgênica, tem contribuído com os programas de melhoramento genético de plantas pela obtenção de genótipos com novas características de interesse. O melhoramento de espécies florestais é limitado por características intrínsecas a tais espécies, como a altura dos indivíduos e o ciclo longo de vida. A transformação genética constitui, portanto, uma alternativa para a obtenção de espécies florestais com características desejáveis em um menor espaço de tempo. Plantas transgênicas com resistência a determinadas pragas, com melhor qualidade de madeira, maior produção de biomassa, tolerância a herbicidas, entre outras características de interesse, já foram obtidas para diferentes espécies florestais de importância econômica como álamo, eucalipto e pinheiros em geral. Este trabalho mostra a importância da transformação genética, associada a outras técnicas biotecnológicas no melhoramento de espécies florestais, as técnicas de transformação mais utilizadas e as características que já foram introduzidas nessas espécies pela transformação.</p
Reduced Expression of Succinyl-Coenzyme A Ligase Can Be Compensated for by Up-Regulation of the γ-Aminobutyrate Shunt in Illuminated Tomato Leaves1[W]
Increasing experimental evidence suggests that the tricarboxylic acid cycle in plants is of greater importance in illuminated photosynthetic tissues than previously thought. In this study, transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the β-subunit of succinyl-coenzyme A ligase in either the antisense orientation or using the RNA interference approach, however, revealed little alteration in either photosynthesis or plant growth despite exhibiting dramatic reductions in activity. Moreover, the rate of respiration was only moderately affected in the transformants, suggesting that this enzyme does not catalyze a crucial step in mitochondrial respiration. However, metabolite and transcript profiling of these lines alongside enzyme and label redistribution experiments revealed that, whereas considerable activity of this enzyme appears to be dispensable, the reason for such a mild phenotype in extremely inhibited lines was an up-regulation of an alternative pathway for succinate production—that offered by the γ-aminobutyric acid shunt. When taken together, these data highlight the importance both of succinate production for mitochondrial metabolism and the interplay between various routes of its production. The results are discussed in the context of current models of plant respiration in mitochondrial and cellular metabolism of the illuminated leaf