6 research outputs found

    New membranes obtained by grafted irradiated PVDF foils

    Get PDF
    The present work describes a new method to produce membranes of poly(Acrylicacid-Xmonomer) using the grafting procedure. PVDF foils irradiated with Ar+ beamwith energies between 30 and 150 keV were employed as substratum. Differentcombinations of monomers in water solutions were used: acrylic acid (AAc); acrylicacid - glycidyl methacrylate (AAc-GMA); acrylic acid - styrene (AAc-S), acrylic acid-N-isopropyl acrylamide (AAc-NIPAAm) and acrylic acid - N-isopropyl acrylamide -glycidyl methacrylate (AAc-NIPAAm-GMA). A large percentage of grafting results forspecific values of: ion fluence and energy, AAc and sulfuric acid concentration, anddifferent substrata PVDF polymorphous (alpha or beta). At a particular time of thegrafting process, the Poly(AAc-Xmonomer) membranes detach from the substratum andcontinue their grafting in the solution. This method is useful to produce increasedreplicated membranes of the irradiated original surface.Fil: Mazzei, R.. Universidad Tecnológica Nacional; Argentina. Comisión Nacional de Energía Atómica; ArgentinaFil: Garcia Bermudez, Gerardo Jose. Comisión Nacional de Energía Atómica; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Camporotondi, Daniela Edhit. Comisión Nacional de Energía Atómica. Gerencia del Área de Investigaciones y Aplicaciones no Nucleares. Gerencia de Física (Centro Atómico Constituyentes); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Arbeitman, Claudia Roxana. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: del Grosso, Mariela Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica; Argentina. Universidad Tecnológica Nacional. Facultad Regional General Pacheco; ArgentinaFil: Behar, M.. Universidade Federal do Rio Grande do Sul; Brasi

    The SARS-CoV-2 spike protein is vulnerable to moderate electric fields

    Get PDF
    Most of the ongoing projects aimed at the development of specific therapies and vaccines against COVID-19 use the SARS-CoV-2 spike (S) protein as the main target. The binding of the spike protein with the ACE2 receptor (ACE2) of the host cell constitutes the first and key step for virus entry. During this process, the receptor binding domain (RBD) of the S protein plays an essential role, since it contains the receptor binding motif (RBM), responsible for the docking to the receptor. So far, mostly biochemical methods are being tested in order to prevent binding of the virus to ACE2. Here we show, with the help of atomistic simulations, that external electric fields of easily achievable and moderate strengths can dramatically destabilise the S protein, inducing long-lasting structural damage. One striking field-induced conformational change occurs at the level of the recognition loop L3 of the RBD where two parallel beta sheets, believed to be responsible for a high affinity to ACE2, undergo a change into an unstructured coil, which exhibits almost no binding possibilities to the ACE2 receptor. We also show that these severe structural changes upon electric-field application also occur in the mutant RBDs corresponding to the variants of concern (VOC) B.1.1.7 (UK), B.1.351 (South Africa) and P.1 (Brazil). Remarkably, while the structural flexibility of S allows the virus to improve its probability of entering the cell, it is also the origin of the surprising vulnerability of S upon application of electric fields of strengths at least two orders of magnitude smaller than those required for damaging most proteins. Our findings suggest the existence of a clean physical method to weaken the SARS-CoV-2 virus without further biochemical processing. Moreover, the effect could be used for infection prevention purposes and also to develop technologies for in-vitro structural manipulation of S. Since the method is largely unspecific, it can be suitable for application to other mutations in S, to other proteins of SARS-CoV-2 and in general to membrane proteins of other virus types

    Polymer tribology by combining ion implantation and radionuclide tracing

    No full text
    Radionuclide tracers were ion implanted with three different techniques into the ultra-high molecular weight polyethylene polymer. Tracer nuclei of 7Be were produced with inverse kinematics via the reaction p(7Li,7Be)n and caught by polymer samples at a forward scattering angle with a maximum implantation energy of 16 MeV. For the first time, 97Ru, 100Pd, and, independently, 111In have been used as radionuclide tracers in ultra-high molecular weight polyethylene. 97Ru and 100Pd were recoil-implanted following the fusion evaporation reactions 92Zr(12C,α3n) 97Ru and 92Zr(12C,4n)100Pd with a maximum implantation energy of 8 MeV. 111In ions were produced in an ion source, mass-separated and implanted at 160 keV. The tribology of implanted polymer samples was studied by tracing the radionuclide during mechanical wear. Uni-directional and bi-directional sliding apparatus with stainless steel actuators were used. Results suggest a debris exchange process as the characteristic feature of the wear-in phase. This process can establish the steady state required for a subsequently constant wear rate in agreement with Archard's equation. The nano-scale implantation of mass-separated 111In appears best suited to the study of non-linear tribological processes during wear-in. Such non-linear processes may be expected to be important in micro- and nanomachines

    Polymer tribology by combining ion implantation and radionuclide tracing

    No full text
    Radionuclide tracers were ion implanted with three different techniques into the ultra-high molecular weight polyethylene polymer. Tracer nuclei of (7)Be were produced with inverse kinematics via the reaction p((7)Li,(7)Be)n and caught by polymer samples at a forward scattering angle with a maximum implantation energy of 16 MeV. For the first time, (97)Ru, (100)Pd, and, independently, (111)In have been used as radionuclide tracers in ultra-high molecular weight polyethylene. (97)Ru and (100)Pd were recoil-implanted following the fusion evaporation reactions (92)Zr((12)C,alpha 3n) (97)Ru and (92)Zr((12)C,4n)(100)Pd with a maximum implantation energy of 8 MeV. (111)In ions were produced in an ion source, mass-separated and implanted at 160 keV. The tribology of implanted polymer samples was studied by tracing the radionuclide during mechanical wear. Uni-directional and bi-directional sliding apparatus with stainless steel actuators were used. Results suggest a debris exchange process as the characteristic feature of the wear-in phase. This process can establish the steady state required for a subsequently constant wear rate in agreement with Archard's equation. The nano-scale implantation of mass-separated (111)In appears best suited to the study of non-linear tribological processes during wear-in. Such non-linear processes may be expected to be important in micro- and nanomachines. (C) 2010 Elsevier B.V. All rights reserved

    Social distancing and strengthened research community efforts to fight pandemics: producing a low-cost SARS-COV-2 ANTIGEN

    No full text
    At the beginning of the worldwide known SARS-CoV-2 pandemic, we have designed a strong collaborative working flow among researchers of different institutes in Argentina, taking advantage of each member's expertise. This effective working network allowed us to accelerate research and developments in a synergistic way. Our goals were to obtain antigens (proteins and multiprotein complexes) useful for the diagnosis and therapy against COVID19 and to make these developments available to society in the fastest and most cost-accessible possible fashion. In this scenario, we will present the advances regarding the scalable production of the receptor-binding domain (RBD) of the Spike protein of SARS-CoV-2. Also, we will present the improvements in the design of an antigen with better immunogenic characteristics compared with those of wild-type monomeric RBD, obtained through the covalent coupling of RBD with other proteins. Our efforts opened a big window of new and promising collaborative arms with other groups outside of our consortium: the purified proteins were useful for antiSARS-CoV-2 antibody detection, IgY production, camelid immunization for nanobody selection, vaccine investigations, and monoclonal antibody developments. We are confident not only that we will be able to positively contribute to the pandemic solution’s opportunities, but that the collaborative way among institutions –often underexploited– we chose to achieve to help fight pandemics will remain after the emergency is gone.Fil: Arbeitman, Claudia R.. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Amante, Analia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Auge, Gabriela Alejandra. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Blaustein Kappelmacher, Matias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Bredeston, Luis María. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Corapi, Enrique Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Craig, Patricio Oliver. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Cossio, Leandro A.. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Dain, Liliana Beatriz. Dirección Nacional de Instituto de Investigación. Administración Nacional de Laboratorios e Institutos de Salud "Dr. Carlos G. Malbrán". Centro Nacional de Genética Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: D'alessio, Cecilia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Elias, Fernanda Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández, Natalia Brenda. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Gándola, Yamila Belén. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Gasulla, Javier. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Química. Centro de Investigaciones del Medio Ambiente; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Gorojovsky, Natalia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Gudesblat, Gustavo Eduardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Herrera, Maria Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Ibañez, Lorena Itatí. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Idrovo Hidalgo, Tommy. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Iglesias Randon, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Kamenetzky, Laura. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Nadra, Alejandro Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Noseda, Diego Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Pavan, Carlos Humberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Pavan, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencia y Tecnología "Dr. César Milstein". Fundación Pablo Cassará. Instituto de Ciencia y Tecnología "Dr. César Milstein"; ArgentinaFil: Pignataro, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Ramirez, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad de Microanálisis y Métodos Físicos en Química Orgánica. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Unidad de Microanálisis y Métodos Físicos en Química Orgánica; ArgentinaFil: Roman, Ernesto Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Ruberto, Lucas Adolfo Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Nanobiotecnología. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Nanobiotecnología; ArgentinaFil: Rubinstein, Natalia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biociencias, Biotecnología y Biología Traslacional; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Santos, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Velázquez Duarte, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Wetzler, Diana Elena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Zelada, Alicia Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaSAIB-SAMIGE Joint Meeting 2020 – OnlineMendozaArgentinaSociedad Argentina de Bioquímica y Biología MolecularSociedad Argentina de Microbiología Genera
    corecore