48 research outputs found

    In Vitro Assessment of Chronic Nanoparticle Effects on Respiratory Cells

    Get PDF
    Nanoparticles (NPs) are included in a variety of consumer products including cosmetics, food, and food packaging. They are also used in medical products for dermal and oral application and for inhalation. The thinness of the air–blood barrier, the large absorption area of the lung, and the relatively low inactivation by enzymes provide fast entry to the systemic blood circulation at high drug concentrations. In addition to intended uptake, exposure to airborne particles from the environment and to NPs released during the manufacturing process may occur. Cytotoxicity is routinely studied for 4–48 h of exposure, but NPs may accumulate in cells and can cause cellular effects after longer times. Both extent and consequences of cellular NP accumulation are currently largely unknown

    SEQUENCE SLIDER: expanding polyalanine fragments for phasing with multiple side-chain hypotheses.

    No full text
    Fragment-based molecular-replacement methods can solve a macromolecular structure quasi-ab initio. ARCIMBOLDO, using a common secondary-structure or tertiary-structure template or a library of folds, locates these with Phaser and reveals the rest of the structure by density modification and autotracing in SHELXE. The latter stage is challenging when dealing with diffraction data at lower resolution, low solvent content, high β-sheet composition or situations in which the initial fragments represent a low fraction of the total scattering or where their accuracy is low. SEQUENCE SLIDER aims to overcome these complications by extending the initial polyalanine fragment with side chains in a multisolution framework. Its use is illustrated on test cases and previously unknown structures. The selection and order of fragments to be extended follows the decrease in log-likelihood gain (LLG) calculated with Phaser upon the omission of each single fragment. When the starting substructure is derived from a remote homolog, sequence assignment to fragments is restricted by the original alignment. Otherwise, the secondary-structure prediction is matched to that found in fragments and traces. Sequence hypotheses are trialled in a brute-force approach through side-chain building and refinement. Scoring the refined models through their LLG in Phaser may allow discrimination of the correct sequence or filter the best partial structures for further density modification and autotracing. The default limits for the number of models to pursue are hardware dependent. In its most economic implementation, suitable for a single laptop, the main-chain trace is extended as polyserine rather than trialling models with different sequence assignments, which requires a grid or multicore machine. SEQUENCE SLIDER has been instrumental in solving two novel structures: that of MltC from 2.7 Å resolution data and that of a pneumococcal lipoprotein with 638 residues and 35% solvent content

    Robust automated detection of microstructural white matter degeneration in Alzheimer’s disease using machine learning classification of multicenter DTI data

    Get PDF
    Diffusion tensor imaging (DTI) based assessment of white matter fiber tract integrity can support the diagnosis of Alzheimer’s disease (AD). The use of DTI as a biomarker, however, depends on its applicability in a multicenter setting accounting for effects of different MRI scanners. We applied multivariate machine learning (ML) to a large multicenter sample from the recently created framework of the European DTI study on Dementia (EDSD). We hypothesized that ML approaches may amend effects of multicenter acquisition. We included a sample of 137 patients with clinically probable AD (MMSE 20.6±5.3) and 143 healthy elderly controls, scanned in nine different scanners. For diagnostic classification we used the DTI indices fractional anisotropy (FA) and mean diffusivity (MD) and, for comparison, gray matter and white matter density maps from anatomical MRI. Data were classified using a Support Vector Machine (SVM) and a Naïve Bayes (NB) classifier. We used two cross-validation approaches, (i) test and training samples randomly drawn from the entire data set (pooled cross-validation) and (ii) data from each scanner as test set, and the data from the remaining scanners as training set (scanner-specific cross-validation). In the pooled cross-validation, SVM achieved an accuracy of 80% for FA and 83% for MD. Accuracies for NB were significantly lower, ranging between 68% and 75%. Removing variance components arising from scanners using principal component analysis did not significantly change the classification results for both classifiers. For the scanner-specific cross-validation, the classification accuracy was reduced for both SVM and NB. After mean correction, classification accuracy reached a level comparable to the results obtained from the pooled cross-validation. Our findings support the notion that machine learning classification allows robust classification of DTI data sets arising from multiple scanners, even if a new data set comes from a scanner that was not part of the training sample

    The BRCA2 c.68-7T > A variant is not pathogenic: A model for clinical calibration of spliceogenicity.

    Get PDF
    Although the spliceogenic nature of the BRCA2 c.68-7T>A variant has been demonstrated, its association with cancer risk remains ontroversial. In this study, we accurately quantified by real-time PCR and digital PCR the BRCA2 isoforms retaining or missing exon 3. In addition, the combined odds ratio for causality of the variant was estimated using genetic and clinical data, and its associated cancer risk was estimated by case-control analysis in 83,636 individuals. Co-occurrence in trans with pathogenic BRCA2 variants was assessed in 5,382 families. Exon 3 exclusion rate was 4.5-fold higher in variant carriers (13%) than controls (3%), indicating an exclusion rate for the c.68-7T>A allele of approximately 20%. The posterior probability of pathogenicity was 7.44 x 10-115. There was neither evidence for increased risk of breast cancer (OR 1.03; 95% CI 0.86-1.24), nor for a deleterious effect of the variant when co-occurring with pathogenic variants. Our data provide for the first time robust evidence of the non-pathogenicity of the BRCA2 c.68-7T>A. Genetic and quantitative transcript analyses together inform the threshold for the ratio between functional and altered BRCA2 isoforms compatible with normal cell function. These findings might be exploited to assess the relevance for cancer risk of other BRCA2 spliceogenic variants

    Screening for Effects of Inhaled Nanoparticles in Cell Culture Models for Prolonged Exposure

    No full text
    Respiratory exposure of humans to environmental and therapeutic nanoparticles repeatedly occurs at relatively low concentrations. To identify adverse effects of particle accumulation under realistic conditions, monocultures of Calu-3 and A549 cells and co-cultures of A549 and THP-1 macrophages in the air–liquid interphase culture were exposed repeatedly to 2 µg/cm2 20 nm and 200 nm polystyrene particles with different functionalization. Particle accumulation, transepithelial electrical resistance, dextran (3–70 kDa) uptake and proinflammatory cytokine secretion were determined over 28 days. Calu-3 cells showed constant particle uptake without any change in barrier function and cytokine release. A549 cells preferentially ingested amino- and not-functionalized particles combined with decreased endocytosis. Cytokine release was transiently increased upon exposure to all particles. Carboxyl-functionalized demonstrated higher uptake and higher cytokine release than the other particles in the A549/THP-1 co-cultures. The evaluated respiratory cells and co-cultures ingested different amounts and types of particles and caused small (partly transient) effects. The data suggest that the healthy cells can adapt to low doses of non-cytotoxic particles

    Screening for Effects of Inhaled Nanoparticles in Cell Culture Models for Prolonged Exposure

    No full text
    Respiratory exposure of humans to environmental and therapeutic nanoparticles repeatedly occurs at relatively low concentrations. To identify adverse effects of particle accumulation under realistic conditions, monocultures of Calu-3 and A549 cells and co-cultures of A549 and THP-1 macrophages in the air–liquid interphase culture were exposed repeatedly to 2 µg/cm2 20 nm and 200 nm polystyrene particles with different functionalization. Particle accumulation, transepithelial electrical resistance, dextran (3–70 kDa) uptake and proinflammatory cytokine secretion were determined over 28 days. Calu-3 cells showed constant particle uptake without any change in barrier function and cytokine release. A549 cells preferentially ingested amino- and not-functionalized particles combined with decreased endocytosis. Cytokine release was transiently increased upon exposure to all particles. Carboxyl-functionalized demonstrated higher uptake and higher cytokine release than the other particles in the A549/THP-1 co-cultures. The evaluated respiratory cells and co-cultures ingested different amounts and types of particles and caused small (partly transient) effects. The data suggest that the healthy cells can adapt to low doses of non-cytotoxic particles

    Assessment of Carbon Nanotubes on Barrier Function, Ciliary Beating Frequency and Cytokine Release in In Vitro Models of the Respiratory Tract

    No full text
    The exposure to inhaled carbon nanotubes (CNT) may have adverse effects on workers upon chronic exposure. In order to assess the toxicity of inhaled nanoparticles in a physiologically relevant manner, an air–liquid interface culture of mono and cocultures of respiratory cells and assessment in reconstructed bronchial and alveolar tissues was used. The effect of CNT4003 reference particles applied in simulated lung fluid was studied in bronchial (Calu-3 cells, EpiAirway™ and MucilAir™ tissues) and alveolar (A549 +/−THP-1 and EpiAlveolar™ +/−THP-1) models. Cytotoxicity, transepithelial electrical resistance, interleukin 6 and 8 secretion, mucociliary clearance and ciliary beating frequency were used as readout parameters. With the exception of increased secretion of interleukin 6 in the EpiAlveolar™ tissues, no adverse effects of CNT4003 particles, applied at doses corresponding to the maximum estimated lifetime exposure of workers, in the bronchial and alveolar models were noted, suggesting no marked differences between the models. Since the doses for whole-life exposure were applied over a shorter time, it is not clear if the interleukin 6 increase in the EpiAlveolar™ tissues has physiological relevance

    The Development of Indicator Cotton Swabs for the Detection of pH in Wounds

    No full text
    Indicator cotton swabs have been developed in order to enable faster, less expensive, and simpler information gathering of a wound status. Swabs are normally used for cleaning the wound, but here, they were covalently functionalized with indicator chemistry. Thus, they in principle enable simultaneous wound cleaning and wound pH detection. Using an indicator dye with a color change from yellow to red, combined with an inert dye of blue color, a traffic light color change from green to red is induced when pH increases. The indicator cotton swabs (ICSs) show a color change from green (appropriate wound pH) to red (elevated wound pH). This color change can be interpreted by the naked eye as well as by an optical color measurement device in order to obtain quantitative data based on the CIE L*a*b* color space. Two types of swabs have been developed—indicator cotton swabs ICS1 with a sensitive range from pH 5 to 7 and swabs ICS2 with a sensitive range from 6.5 to 8.5. The swabs are gamma-sterilized and the effect of sterilization on performance was found to be negligible. Furthermore, cytotoxicity testing shows cell viability and endotoxin levels to be within the allowable range

    Action of polystyrene nanoparticles of different sizes on lysosomal function and integrity

    No full text
    Abstract Background Data from environmental exposure to nanoparticles (NPs) suggest that chronic exposure may increase the incidence of lung, cardiovascular and neurodegenerative diseases. Impairment of cell function by intracellular accumulation of NPs is also suspected. Many types of NPs have been detected in the endosomal-lysosomal system and, upon repeated exposure, alterations of the endosomal-lysosomal system may occur. To identify such effects we compared the effect of carboxyl polystyrene particles (CPS) of different sizes (20-500 nm) on lysosomes of the endothelial cell line EAhy926 after short (24h) and long (72h-96h) exposure times. Lysosomal localization of CPS, as well as lysosomal pH, lysosomal membrane integrity, morphology of the endosomal-lysosomal system and activities of the lysosomal enzymes,cathepsin B and sulfatases, upon exposure to CPS were recorded. Results CPS in sizes ≤100 nm showed high co-localization with lysosomes already after 4h, larger CPS after 24h. None of the particles at non-cytotoxic concentrations caused marked changes in lysosomal pH or destroyed lysosomal membrane integrity. At 24h of exposure, 20 nm CPS induced significant dilatation of the endosomal-lysosomal system and reduced activity of lysosomal sulfatases. After 72h, these alterations were less pronounced. Conclusions Despite accumulation in lysosomes CPS induced only small changes in lysosomes. Upon longer contact, these changes are even less pronounced. The presented panel of assays may serve to identify effects on lysosomes also for other NPs.</p
    corecore