4 research outputs found

    Differential Role of TGF-β in Extracellular Matrix Regulation During Trypanosoma cruzi-Host Cell Interaction

    No full text
    Transforming growth factor beta (TGF-β) is a determinant for inflammation and fibrosis in cardiac and skeletal muscle in Chagas disease. To determine its regulatory mechanisms, we investigated the response of Trypanosoma cruzi-infected cardiomyocytes (CM), cardiac fibroblasts (CF), and L6E9 skeletal myoblasts to TGF-β. Cultures of CM, CF, and L6E9 were infected with T. cruzi (Y strain) and treated with TGF-β (1–10 ng/mL, 1 h or 48 h). Fibronectin (FN) distribution was analyzed by immunofluorescence and Western blot (WB). Phosphorylated SMAD2 (PS2), phospho-p38 (p-p38), and phospho-c-Jun (p-c-Jun) signaling were evaluated by WB. CF and L6E9 showed an increase in FN from 1 ng/mL of TGF-β, while CM displayed FN modulation only after 10 ng/mL treatment. CF and L6E9 showed higher PS2 levels than CM, while p38 was less stimulated in CF than CM and L6E9. T. cruzi infection resulted in localized FN disorganization in CF and L6E9. T. cruzi induced an increase in FN in CF cultures, mainly in uninfected cells. Infected CF cultures treated with TGF-β showed a reduction in PS2 and an increase in p-p38 and p-c-Jun levels. Our data suggest that p38 and c-Jun pathways may be participating in the fibrosis regulatory process mediated by TGF-β after T. cruzi infection

    Long term follow-up of Trypanosoma cruzi infection and Chagas disease manifestations in mice treated with benznidazole or posaconazole.

    No full text
    Chagas' Disease, caused by the protozoan parasite Trypanosoma cruzi, is responsible for up to 41% of the heart failures in endemic areas in South America and is an emerging infection in regions of North America, Europe, and Asia. Treatment is suboptimal due to two factors. First, the lack of an adequate biomarker to predict disease severity and response to therapy; and second, up to 120-days treatment course coupled with a significant incidence of adverse effects from the drug currently used. Because the disease can manifest itself clinically a few years to decades after infection, controversy remains concerning the suitability of current drug treatment (benznidazole), and the efficacy of alternative drugs (e.g. posaconazole). We therefore followed the clinical course, and PCR detection of parasite burden, in a mouse model of infection for a full year following treatment with benznidazole or posaconazole. Efficacy of the two drugs depended on whether the treatment was performed during the acute model or the chronic model of infection. Posaconazole was clearly superior in treatment of acute disease whereas only benznidazole had efficacy in the chronic model. These results have important implications for the design and analysis of human clinical trials, and the use of specific drugs in specific clinical settings

    Hydroxamic acid derivatives: a promising scaffold for rational compound optimization in Chagas disease

    No full text
    This work describes the antitrypanocidal activity of two hydroxamic acid derivatives containing o-ethoxy (HAD1) and p-ethoxy (HAD2) as substituent in the aromatic ring linked to the isoxazoline ring. HAD1 and HAD2 induced a significant reduction in the number of intracellular parasites and consequently showed activity on the multiplication of the parasite. Treatment of cardiomyocytes and macrophages with the compounds revealed no significant loss in cell viability. Ultrastructural alterations after treatment of cardiomyocytes or macrophages infected by Trypanosoma cruzi with the IC50 value of HAD1 revealed alterations to amastigotes, showing initial damage seen as swelling of the kinetoplast. This gave a good indication of the ability of the drug to permeate through the host cell membrane as well as its selectivity to the parasite target. Both compounds HAD1 and 2 were able to reduce the cysteine peptidases and decrease the activity of metallopeptidases

    Interactions between 4-aminoquinoline and heme: Promising mechanism against Trypanosoma cruzi

    Get PDF
    AbstractChagas disease is a neglected tropical disease caused by the flagellated protozoan Trypanosoma cruzi. The current drugs used to treat this disease have limited efficacy and produce severe side effects. Quinolines, nitrogen heterocycle compounds that form complexes with heme, have a broad spectrum of antiprotozoal activity and are a promising class of new compounds for Chagas disease chemotherapy. In this study, we evaluated the activity of a series of 4-arylaminoquinoline-3-carbonitrile derivatives against all forms of Trypanosoma cruzi in vitro. Compound 1g showed promising activity against epimastigote forms when combined with hemin (IC50<1 μM), with better performance than benznidazole, the reference drug. This compound also inhibited the viability of trypomastigotes and intracellular amastigotes. The potency of 1g in combination with heme was enhanced against epimastigotes and trypomastigotes, suggesting a similar mechanism of action that occurs in Plasmodium spp. The addition of hemin to the culture medium increased trypanocidal activity of analog 1g without changing the cytotoxicity of the host cell, reaching an IC50 of 11.7 μM for trypomastigotes. The mechanism of action was demonstrated by the interaction of compound 1g with hemin in solution and prevention of heme peroxidation. Compound 1g and heme treatment induced alterations of the mitochondrion-kinetoplast complex in epimastigotes and trypomastigotes and also, accumulation of electron-dense deposits in amastigotes as visualized by transmission electron microscopy. The trypanocidal activity of 4-aminoquinolines and the elucidation of the mechanism involving interaction with heme is a neglected field of research, given the parasite's lack of heme biosynthetic pathway and the importance of this cofactor for parasite survival and growth. The results of this study can improve and guide rational drug development and combination treatment strategies
    corecore