10 research outputs found

    Interactions among Amazon land use, forests and climate: prospects for a near-term forest tipping point

    Get PDF
    Some model experiments predict a large-scale substitution of Amazon forest by savannah-like vegetation by the end of the twenty-first century. Expanding global demands for biofuels and grains, positive feedbacks in the Amazon forest fire regime and drought may drive a faster process of forest degradation that could lead to a near-term forest dieback. Rising worldwide demands for biofuel and meat are creating powerful new incentives for agro-industrial expansion into Amazon forest regions. Forest fires, drought and logging increase susceptibility to further burning while deforestation and smoke can inhibit rainfall, exacerbating fire risk. If sea surface temperature anomalies (such as El Niño episodes) and associated Amazon droughts of the last decade continue into the future, approximately 55% of the forests of the Amazon will be cleared, logged, damaged by drought or burned over the next 20 years, emitting 15–26 Pg of carbon to the atmosphere. Several important trends could prevent a near-term dieback. As fire-sensitive investments accumulate in the landscape, property holders use less fire and invest more in fire control. Commodity markets are demanding higher environmental performance from farmers and cattle ranchers. Protected areas have been established in the pathway of expanding agricultural frontiers. Finally, emerging carbon market incentives for reductions in deforestation could support these trends

    Decoupling of Deforestation and Soy Production in the Southern Amazon During the Late 2000s

    Get PDF
    From 2006-2010 deforestation in the Amazon frontier state of Mato Grosso decreased to 30% of its historical average (1996-2005) while agricultural production reached an all time high, achieving the oft-cited objective of increasing production while maintaining forest cover. This study combines satellite data with government deforestation and production statistics to assess land-use transitions and potential market and policy drivers associated with these trends. In the forested region of the state, increased soy production from 2001-2005 was entirely due to cropland expansion into previously cleared areas (74%) or forests (26%). From 2006-2010, 78% of production increases were due to expansion (22% to yield increases), with 91% on previously cleared land. Cropland expansion fell from 10% to 2% of deforestation between the two periods, with pasture expansion accounting for most remaining deforestation. Declining deforestation coincided with a collapse of commodity markets and implementation of policy measures to reduce deforestation. Soybean profitability has since increased to pre-2006 levels while deforestation continued to decline, suggesting that anti-deforestation measures may have influenced the agricultural sector. We found little evidence of leakage of soy expansion into cerrado in Mato Grosso or forests in neighboring Amazon states during the late 2000s, although leakage to more distant regions is possible. This study provides empirical evidence that reduced deforestation and increased agricultural production can occur simultaneously in tropical forest frontiers through productive use of already cleared lands. It remains uncertain whether government and industry-led policies can contain deforestation when market conditions again favor a boom in agricultural expansion

    Managing the Tropical Agriculture Revolution

    No full text

    Ecosystem Services from Tropical Forests: Review of Current Science

    No full text

    Quellen- und Literaturverzeichnis

    No full text
    corecore