84 research outputs found

    The supplemental value of mammographic screening over breast MRI alone in BRCA2 mutation carriers

    Get PDF
    Purpose: BRCA2 mutation carriers are offered annual breast screening with MRI and mammography. The aim of this study was to investigate the supplemental value of mammographic screening over MRI screening alone. Methods: In this multicenter study, proven BRCA2 mutation carriers, who developed breast cancer during screening using both digital mammography and state-of-art breast MRI, were identified. Clinical data were reviewed to classify cases in screen-detected and interval cancers. Imaging was reviewed to assess the diagnostic value of mammography and MRI, using the Breast Imaging and Data System (BI-RADS) classification allocated at the time of diagnosis. Results: From January 2003 till March 2019, 62 invasive breast cancers and 23 ductal carcinomas in situ were diagnosed in 83 BRCA2 mutation carriers under surveillance. Overall screening sensitivity was 95.2% (81/85). Four interval cancers occurred (4.7% (4/85)). MRI detected 73 of 85 breast cancers (sensitivity 85.8%) and 42 mammography (sensitivity 49.9%) (p < 0.001). Eight mammography-only lesions occurred. In 1 of 17 women younger than 40 years, a 6-mm grade 3 DCIS, retrospectively visible on MRI, was detected with mammography only in a 38-year-old woman. The other 7 mammography-only breast cancers were diagnosed in women aged 50 years and older, increasing sensitivity in this subgroup from 79.5% (35/44) to 95.5% (42/44) (p ≤ 0.001). Conclusions: In BRCA2 mutation carriers younger than 40 years, the benefit of mammographic screening over MRI was very small. In carriers of 50 years and older, mammographic screening contributed significantly. Hence, we propose to postpone mammographic screening in BRCA2 mutation carriers to at least age 40

    Volumetric breast density estimation on MRI using explainable deep learning regression

    Get PDF
    To purpose of this paper was to assess the feasibility of volumetric breast density estimations on MRI without segmentations accompanied with an explainability step. A total of 615 patients with breast cancer were included for volumetric breast density estimation. A 3-dimensional regression convolutional neural network (CNN) was used to estimate the volumetric breast density. Patients were split in training (N = 400), validation (N = 50), and hold-out test set (N = 165). Hyperparameters were optimized using Neural Network Intelligence and augmentations consisted of translations and rotations. The estimated densities were evaluated to the ground truth using Spearman's correlation and Bland-Altman plots. The output of the CNN was visually analyzed using SHapley Additive exPlanations (SHAP). Spearman's correlation between estimated and ground truth density was ρ = 0.81 (N = 165, P < 0.001) in the hold-out test set. The estimated density had a median bias of 0.70% (95% limits of agreement = - 6.8% to 5.0%) to the ground truth. SHAP showed that in correct density estimations, the algorithm based its decision on fibroglandular and fatty tissue. In incorrect estimations, other structures such as the pectoral muscle or the heart were included. To conclude, it is feasible to automatically estimate volumetric breast density on MRI without segmentations, and to provide accompanying explanations

    Contralateral parenchymal enhancement on breast MRI before and during neoadjuvant endocrine therapy in relation to the preoperative endocrine prognostic index

    Get PDF
    OBJECTIVES: To investigate whether contralateral parenchymal enhancement (CPE) on MRI during neoadjuvant endocrine therapy (NET) is associated with the preoperative endocrine prognostic index (PEPI) of ER+/HER2- breast cancer. METHODS: This retrospective observational cohort study included 40 unilateral ER+/HER2- breast cancer patients treated with NET. Patients received NET for 6 to 9 months with MRI response monitoring after 3 and/or 6 months. PEPI was used as endpoint. PEPI is based on surgery-derived pathology (pT- and pN-stage, Ki67, and ER-status) and stratifies patients in three groups with distinct prognoses. Mixed effects and ROC analysis were performed to investigate whether CPE was associated with PEPI and to assess discriminatory ability. RESULTS: The median patient age was 61 (interquartile interval: 52, 69). Twelve patients had PEPI-1 (good prognosis), 15 PEPI-2 (intermediate), and 13 PEPI-3 (poor). High pretreatment CPE was associated with PEPI-3: pretreatment CPE was 39.4% higher on average (95% CI = 1.3, 91.9%; p = .047) compared with PEPI-1. CPE decreased after 3 months in PEPI-2 and PEPI-3. The average reduction was 24.4% (95% CI = 2.6, 41.3%; p = .032) in PEPI-2 and 29.2% (95% CI = 7.8, 45.6%; p = .011) in PEPI-3 compared with baseline. Change in CPE was predictive of PEPI-1 vs PEPI-2+3 (AUC = 0.77; 95% CI = 0.57, 0.96). CONCLUSIONS: CPE during NET is associated with PEPI-group in ER+/HER2- breast cancer: a high pretreatment CPE and a decrease in CPE during NET were associated with a poor prognosis after NET on the basis of PEPI. KEY POINTS: • Change in contralateral breast parenchymal enhancement on MRI during neoadjuvant endocrine therapy distinguished between patients with a good and intermediate/poor prognosis at final pathology. • Patients with a poor prognosis at final pathology showed higher baseline parenchymal enhancement on average compared to patients with a good prognosis. • Patients with an intermediate/poor prognosis at final pathology showed a higher average reduction in parenchymal enhancement after 3 months of neoadjuvant endocrine therapy

    Minimally invasive complete response assessment of the breast after neoadjuvant systemic therapy for early breast cancer (micra trial) : interim analysis of a multicenter observational cohort study

    Get PDF
    Background The added value of surgery in breast cancer patients with pathological complete response (pCR) after neoadjuvant systemic therapy (NST) is uncertain. The accuracy of imaging identifying pCR for omission of surgery, however, is insufficient. We investigated the accuracy of ultrasound-guided biopsies identifying breast pCR (ypT0) after NST in patients with radiological partial (rPR) or complete response (rCR) on MRI. Methods We performed a multicenter, prospective single-arm study in three Dutch hospitals. Patients with T1-4(N0 or N +) breast cancer with MRI rPR and enhancement <= 2.0 cm or MRI rCR after NST were enrolled. Eight ultrasound-guided 14-G core biopsies were obtained in the operating room before surgery close to the marker placed centrally in the tumor area at diagnosis (no attempt was made to remove the marker), and compared with the surgical specimen of the breast. Primary outcome was the false-negative rate (FNR). Results Between April 2016 and June 2019, 202 patients fulfilled eligibility criteria. Pre-surgical biopsies were obtained in 167 patients, of whom 136 had rCR and 31 had rPR on MRI. Forty-three (26%) tumors were hormone receptor (HR)-positive/HER2-negative, 64 (38%) were HER2-positive, and 60 (36%) were triple-negative. Eighty-nine patients had pCR (53%; 95% CI 45-61) and 78 had residual disease. Biopsies were false-negative in 29 (37%; 95% CI 27-49) of 78 patients. The multivariable associated with false-negative biopsies was rCR (FNR 47%; OR 9.81, 95% CI 1.72-55.89; p = 0.01); a trend was observed for HR-negative tumors (FNR 71% in HER2-positive and 55% in triple-negative tumors; OR 4.55, 95% CI 0.95-21.73; p = 0.058) and smaller pathological lesions (6 mm vs 15 mm; OR 0.93, 95% CI 0.87-1.00; p = 0.051). Conclusion The MICRA trial showed that ultrasound-guided core biopsies are not accurate enough to identify breast pCR in patients with good response on MRI after NST. Therefore, breast surgery cannot safely be omitted relying on the results of core biopsies in these patients

    Harmonization of Quantitative Parenchymal Enhancement in T1 -Weighted Breast MRI

    Get PDF
    Background: Differences in imaging parameters influence computer-extracted parenchymal enhancement measures from breast MRI. Purpose: To investigate the effect of differences in dynamic contrast-enhanced MRI acquisition parameter settings on quantitative parenchymal enhancement of the breast, and to evaluate harmonization of contrast-enhancement values with respect to flip angle and repetition time. Study Type: Retrospective. Phantom/Populations: We modeled parenchymal enhancement using simulations, a phantom, and two cohorts (N = 398 and N = 302) from independent cancer centers. Sequence Field/Strength: 1.5T dynamic contrast-enhanced T 1-weighted spoiled gradient echo MRI. Vendors: Philips, Siemens, General Electric Medical Systems. Assessment: We assessed harmonization of parenchymal enhancement in simulations and phantom by varying the MR parameters that influence the amount of T 1-weighting: flip angle (8°–25°) and repetition time (4–12 msec). We calculated the median and interquartile range (IQR) of the enhancement values before and after harmonization. In vivo, we assessed overlap of quantitative parenchymal enhancement in the cohorts before and after harmonization using kernel density estimations. Cohort 1 was scanned with flip angle 20° and repetition time 8 msec; cohort 2 with flip angle 10° and repetition time 6 msec. Statistical Tests: Paired Wilcoxon signed-rank-test of bootstrapped kernel density estimations. Results: Before harmonization, simulated enhancement values had a median (IQR) of 0.46 (0.34–0.49). After harmonization, the IQR was reduced: median (IQR): 0.44 (0.44–0.45). In the phantom, the IQR also decreased, median (IQR): 0.96 (0.59–1.22) before harmonization, 0.96 (0.91–1.02) after harmonization. Harmonization yielded significantly (P < 0.001) better overlap in parenchymal enhancement between the cohorts: median (IQR) was 0.46 (0.37–0.58) for cohort 1 vs. 0.37 (0.30–0.44) for cohort 2 before harmonization (57% overlap); and 0.35 (0.28–0.43) vs.0.37 (0.30–0.44) after harmonization (85% overlap). Data Conclusion: The proposed practical harmonization method enables an accurate comparison between patients scanned with differences in imaging parameters. Level of Evidence: 3. Technical Efficacy Stage: 4

    Природный и антропогенный факторы формирования и развития культурного ландшафта Форосского парка

    Get PDF
    Цель данной статьи: на примере небольшой территории Южного берега Крыма – парка в пгт. Форос и прилегающей к нему местности – показать роль и место культурного ландшафта в формировании человеком исторического геокультурного пространства

    Assessment of false-negative cases of breast MR imaging in women with a familial or genetic predisposition

    Get PDF
    In order to assess the characteristics of malignant breast lesions those were not detected during screening by MR imaging. In the Dutch MRI screening study (MRISC), a non-randomized prospective multicenter study, women with high familial risk or a genetic predisposition for breast cancer were screened once a year by mammography and MRI and every 6 months with a clinical breast examination (CBE). The false-negative MR examinations were subject of this study and were retrospectively reviewed by two experienced radiologists. From November 1999 until March 2006, 2,157 women were eligible for study analyses. Ninety-seven malignant breast tumors were detected, including 19 DCIS (20%). In 22 patients with a malignant lesion, the MRI was assessed as BI-RADS 1 or 2. One patient was excluded because the examinations were not available for review. Forty-three percent (9/21) of the false-negative MR cases concerned pure ductal carcinoma in situ (DCIS) or DCIS with invasive foci, in eight of them no enhancement was seen at the review. In six patients the features of malignancy were missed or misinterpreted. Small lesion size (n = 3), extensive diffuse contrast enhancement of the breast parenchyma (n = 2), and a technically inadequate examination (n = 1) were other causes of the missed diagnosis. A major part of the false-negative MR diagnoses concerned non-enhancing DCIS, underlining the necessity of screening not only with MRI but also with mammography. Improvement of MRI scanning protocols may increase the detection rate of DCIS. The missed and misinterpreted cases are reflecting the learning curve of a multicenter study

    High-dose alkylating chemotherapy in BRCA-altered triple-negative breast cancer: the randomized phase III NeoTN trial

    Get PDF
    Exploratory analyses of high-dose alkylating chemotherapy trials have suggested that BRCA1 or BRCA2-pathway altered (BRCA-altered) breast cancer might be particularly sensitive to this type of treatment. In this study, patients with BRCA-altered tumors who had received three initial courses of dose-dense doxorubicin and cyclophosphamide (ddAC), were randomized between a fourth ddAC course followed by high-dose carboplatin-thiotepa-cyclophosphamide or conventional chemotherapy (initially ddAC only or ddAC-capecitabine/decetaxel [CD] depending on MRI response, after amendment ddAC-carboplatin/paclitaxel [CP] for everyone). The primary endpoint was the neoadjuvant response index (NRI). Secondary endpoints included recurrence-free survival (RFS) and overall survival (OS). In total, 122 patients were randomized. No difference in NRI-score distribution (p = 0.41) was found. A statistically non-significant RFS difference was found (HR 0.54; 95% CI 0.23–1.25; p = 0.15). Exploratory RFS analyses showed benefit in stage III (n = 35; HR 0.16; 95% CI 0.03–0.75), but not stage II (n = 86; HR 1.00; 95% CI 0.30–3.30) patients. For stage III, 4-year RFS was 46% (95% CI 24–87%), 71% (95% CI 48–100%) and 88% (95% CI 74–100%), for ddAC/ddAC-CD, ddAC-CP and high-dose chemotherapy, respectively. No significant differences were found between high-dose and conventional chemotherapy in stage II-III, triple-negative, BRCA-altered breast cancer patients. Further research is needed to establish if there are patients with stage III, triple negative BRCA-altered breast cancer for whom outcomes can be improved with high-dose alkylating chemotherapy or whether the current standard neoadjuvant therapy including carboplatin and an immune checkpoint inhibitor is sufficient. Trial Registration: NCT01057069
    corecore