70 research outputs found

    Quantum electrodynamics of relativistic bound states with cutoffs

    Full text link
    We consider an Hamiltonian with ultraviolet and infrared cutoffs, describing the interaction of relativistic electrons and positrons in the Coulomb potential with photons in Coulomb gauge. The interaction includes both interaction of the current density with transversal photons and the Coulomb interaction of charge density with itself. We prove that the Hamiltonian is self-adjoint and has a ground state for sufficiently small coupling constants.Comment: To appear in "Journal of Hyperbolic Differential Equation

    Renormalizing the Schwinger-Dyson equations in the auxiliary field formulation of λϕ4\lambda \phi^4 field theory

    Full text link
    In this paper we study the renormalization of the Schwinger-Dyson equations that arise in the auxiliary field formulation of the O(N) ϕ4\phi^4 field theory. The auxiliary field formulation allows a simple interpretation of the large-N expansion as a loop expansion of the generating functional in the auxiliary field χ\chi, once the effective action is obtained by integrating over the ϕ\phi fields. Our all orders result is then used to obtain finite renormalized Schwinger-Dyson equations based on truncation expansions which utilize the two-particle irreducible (2-PI) generating function formalism. We first do an all orders renormalization of the two- and three-point function equations in the vacuum sector. This result is then used to obtain explicitly finite and renormalization constant independent self-consistent S-D equations valid to order~1/N, in both 2+1 and 3+1 dimensions. We compare the results for the real and imaginary parts of the renormalized Green's functions with the related \emph{sunset} approximation to the 2-PI equations discussed by Van Hees and Knoll, and comment on the importance of the Landau pole effect.Comment: 20 pages, 10 figure

    Arithmetics, geometry and conformal fields

    No full text
    The last few years have witnessed a remarkeble conjunction of methods in such diverse domains as strings and topological field theory, two dimensional statistical physics, classical and quantum integrable systems. The lectures will aim to present some of the underlying mathematics at an elementary and pedagogical level, for their intrinsic value.Lectures in mathematics related to theoretical physic

    New developments in Field Theory

    No full text
    Session 1

    Quantum field theory

    No full text
    Quantum field theory remains among the most important tools in defining and explaining the microscopic world. Recent years have witnessed a blossoming of developments and applications that extend far beyond the theory's original scope. This comprehensive text offers a balanced treatment, providing students with both a formal presentation and numerous practical examples of calculations.This two-part approach begins with the standard quantization of electrodynamics, culminating in the perturbative renormalization. The second part comprises functional methods, relativistic bound states, broken s

    Théorie statistique des champs

    No full text
    • …
    corecore