1,017 research outputs found

    ‘Gobbling drops’: the jetting–dripping transition in flows of polymer solutions

    Get PDF
    This paper discusses the breakup of capillary jets of dilute polymer solutions and the dynamics associated with the transition from dripping to jetting. High-speed digital video imaging reveals a new scenario of transition and breakup via periodic growth and detachment of large terminal drops. The underlying mechanism is discussed and a basic theory for the mechanism of breakup is also presented. The dynamics of the terminal drop growth and trajectory prove to be governed primarily by mass and momentum balances involving capillary, gravity and inertial forces, whilst the drop detachment event is controlled by the kinetics of the thinning process in the viscoelastic ligaments that connect the drops. This thinning process of the ligaments that are subjected to a constant axial force is driven by surface tension and resisted by the viscoelasticity of the dissolved polymeric molecules. Analysis of this transition provides a new experimental method to probe the rheological properties of solutions when minute concentrations of macromolecules have been added.Schlumberger FoundationMIT Class of 1951 Fellowship Fun

    Use of Imaging Spectrometer Data and Multispectral Imagery for Improved Earthquake Response

    Get PDF
    Imaging and Applied Optics Technical Digest, 2012Multispectral imagery and imaging spectrometer data are used to develop prototype map products for improved earthquake response. A tiered approach keyed to post-event communications infrastructure is directed at providing critical information to emergency services personnel.This research is supported by the Science and Technology (S&T) Directorate, Department of Homeland Security (DHS). We gratefully acknowledge the participation of emergency responders and managers from the cities and counties of Monterey, Los Angeles, San Diego, and Riverside California. We also appreciate contributions during project definition stage and follow-ups by the California Emergency Management Agency (Cal EMA) and the Federal Emergency Management Agency (FEMA), the U.S. Geological Survey, and DHS. AVIRIS data were acquired by NASA/JPL. The LiDAR data were provided by the Association of Monterey Bay Area Governments, via a USGS grant through the American Reinvestment and Recovery Act of 2009. WV-2 data were provided by the National Geospatial Intelligence Agency (NGA) under the NextView imagery license agreement

    The impact of a school-based water supply and treatment, hygiene, and sanitation programme on pupil diarrhoea: a cluster-randomized trial.

    Get PDF
    The impact of improved water, sanitation, and hygiene (WASH) access on mitigating illness is well documented, although impact of school-based WASH on school-aged children has not been rigorously explored. We conducted a cluster-randomized trial in Nyanza Province, Kenya to assess the impact of a school-based WASH intervention on diarrhoeal disease in primary-school pupils. Two study populations were used: schools with a nearby dry season water source and those without. Pupils attending 'water-available' schools that received hygiene promotion and water treatment (HP&WT) and sanitation improvements showed no difference in period prevalence or duration of illness compared to pupils attending control schools. Those pupils in schools that received only the HP&WT showed similar results. Pupils in 'water-scarce' schools that received a water-supply improvement, HP&WT and sanitation showed a reduction in diarrhoea incidence and days of illness. Our study revealed mixed results on the impact of improvements to school WASH improvements on pupil diarrhoea

    How Dilute are Dilute Solutions in Extensional Flows?

    Get PDF
    Submitted to J. Rheol.We investigate the concentration-dependence of the characteristic relaxation time of dilute polymer solutions in transient uniaxial elongational flow. A series of monodisperse polystyrene solutions of five different molecular weights (1.8×10^6 ≤ M ≤ 8.3×10^6 g/mol) with concentrations spanning five orders of magnitude were dissolved in two solvents of differing solvent quality (diethyl phthalate and oligomeric styrene). Optical measurements of the rate of filament thinning and the time to break-up in each fluid are used to determine the characteristic relaxation time. A lower sensitivity limit for the measurements was determined experimentally and confirmed by comparison to numerical calculations. Above this sensitivity limit we show that the effective relaxation time of moderately dilute solutions (0.01 ≤ c/c* ≤ 1) in transient extensional flow rises substantially above the fitted value of the relaxation time extracted from small amplitude oscillatory shear flow and above the Zimm relaxation time computed from kinetic theory and intrinsic viscosity measurements. This effective relaxation time exhibits a power-law scaling with the reduced concentration (c/c*) and the magnitude of the exponent varies with the thermodynamic quality of the solvent. This scaling appears to be roughly consistent to that predicted when the dynamics of the partially elongated and overlapping polymer chains are described within the framework of blob theories for semi-dilute solutions.NASA Microgravity Fluid Dynamic

    Estimating the impact of unsafe water, sanitation and hygiene on the global burden of disease: evolving and alternative methods.

    Get PDF
    The 2010 global burden of disease (GBD) study represents the latest effort to estimate the global burden of disease and injuries and the associated risk factors. Like previous GBD studies, this latest iteration reflects a continuing evolution in methods, scope and evidence base. Since the first GBD Study in 1990, the burden of diarrhoeal disease and the burden attributable to inadequate water and sanitation have fallen dramatically. While this is consistent with trends in communicable disease and child mortality, the change in attributable risk is also due to new interpretations of the epidemiological evidence from studies of interventions to improve water quality. To provide context for a series of companion papers proposing alternative assumptions and methods concerning the disease burden and risks from inadequate water, sanitation and hygiene, we summarise evolving methods over previous GBD studies. We also describe an alternative approach using population intervention modelling. We conclude by emphasising the important role of GBD studies and the need to ensure that policy on interventions such as water and sanitation be grounded on methods that are transparent, peer-reviewed and widely accepted
    corecore