1,019 research outputs found

    Presynaptic initiation by action potentials of retrograde signals in developing neurons.

    Get PDF
    Until recently, the only means by which electrical activity was believed to initiate retrograde signals was via postsynaptic events: modulated synthesis or release of trophic factors. We have evidence in chick embryos for a presynaptic initiation of retrograde signals from the retina to the isthmo-optic nucleus, which is known to undergo 55% neuron death between embryonic days 12 and 17 and to become laminated during this period. Intraocular injections of saxitoxin just before embryonic day 14 reduce neuron death and prevent lamination in the isthmo-optic nucleus within as few as 6 hr. We show that these rapid effects are attributable to the direct action of saxitoxin on the isthmo-optic terminals. Alternative possibilities, such as an indirect effect via the target cells, are ruled out by control experiments. Normally, action potentials may lead to a chain of second messenger events in the axon terminal that is signaled retrogradely via the transport of a long-lived second messenger

    Estimating the long-term historic evolution of exposure to flooding of coastal populations

    No full text
    Coastal managers face the task of assessing and managing flood risk. This requires knowledge of the area of land, the number of people, properties and other infrastructure potentially affected by floods. Such analyses are usually static; i.e. they only consider a snapshot of the current situation. This misses the opportunity to learn about the role of key drivers of historical changes in flood risk, such as development and population rise in the coastal flood plain and sea-level rise.In this paper, we develop and apply a method to analyse the temporal evolution of residential population exposure to coastal flooding. It uses readily available data in a GIS environment. We examine how population and sea level change modify exposure over two centuries in two neighbouring coastal sites: Portsea and Hayling Islands on the UK south coast. The analysis shows that flood exposure changes as a result of increases in population, changes in coastal population density and sea level rise. The results indicate that to date, population change is the dominant driver of the increase in exposure to flooding in the study sites, but climate change may outweigh this in the future. A full analysis of flood risk is not possible as data on historic defences and wider vulnerability are not available. Hence, the historic evolution of flood exposure is as close as we can get to a historic evolution of flood risk.The method is applicable anywhere that suitable floodplain geometry, sea level and population datasets are available and could be widely applied, and will help inform coastal managers of the time evolution in coastal flood drivers<br/

    The OmniPod Insulin Management System: the latest innovation in insulin pump therapy

    Get PDF
    This review of insulin pump therapy focuses on the OmniPod® Insulin Management System (Insulet Corp., Bedford, MA, USA). The OmniPod System is the first commercially available “patch pump.” It is a fully integrated wearable pump, controlled wirelessly through a handheld device containing a built-in blood glucose meter. This is an evaluation of the OmniPod System, with the aim of providing an educational tool for physicians who are considering recommending this product to their patients. The review includes a discussion of the traditional insulin pump configuration and its limitations, a detailed overview of the OmniPod System, references to clinical study data, planned product enhancements, its use as an insulin delivery system in the Juvenile Diabetes Research Foundation’s Artificial Pancreas Project, and its use to deliver additional compounds

    Hybrid gap plasmon GaAs nanolasers

    Get PDF
    Compact semiconductor lasers with sub-wavelength-scale dimensions rely heavily on materials with low surface recombination due to the large surface area to volume ratios of their nano-cavities. Furthermore, the reliance on semiconductor nanostructures has led to predominantly bottom-up fabrication approaches, which has hindered scalable and practical applications. In this letter, we present lithographically constructed hybrid gap plasmon nanolasers using the gain of bulk GaAs operating at room temperature. The nanolasers are built on GaAs suspended membranes with InGaP passivation layers. Laser resonators are defined only by patterning gold on top of these GaAs membranes, thus eliminating the need to etch the semiconductor for optical confinement, which would intro duce additional surface recombination. An analysis of the modal gain and losses in these devices suggests that threshold carrier densities in the range of 4-5×1018 cm -3 are necessary - potentially achievable with current densities as low as 6-8 kA cm-2

    Lkb1

    Full text link

    Bounded Model Checking of Concurrent Data Types on Relaxed Memory Models: A Case Study

    Get PDF
    Many multithreaded programs employ concurrent data types to safely share data among threads. However, highly-concurrent algorithms for even seemingly simple data types are difficult to implement correctly, especially when considering the relaxed memory ordering models commonly employed by today’s multiprocessors. The formal verification of such implementations is challenging as well because the high degree of concurrency leads to a large number of possible executions. In this case study, we develop a SAT-based bounded verification method and apply it to a representative example, a well-known two-lock concurrent queue algorithm. We first formulate a correctness criterion that specifically targets failures caused by concurrency; it demands that all concurrent executions be observationally equivalent to some serial execution. Next, we define a relaxed memory model that conservatively approximates several common shared-memory multiprocessors. Using commit point specifications, a suite of finite symbolic tests, a prototype encoder, and a standard SAT solver, we successfully identify two failures of a naive implementation that can be observed only under relaxed memory models. We eliminate these failures by inserting appropriate memory ordering fences into the code. The experiments confirm that our approach provides a valuable aid for desigining and implementing concurrent data types

    Numerical analysis of the radio-frequency single-electron transistor operation

    Full text link
    We have analyzed numerically the response and noise-limited charge sensitivity of a radio-frequency single-electron transistor (RF-SET) in a non-superconducting state using the orthodox theory. In particular, we have studied the performance dependence on the quality factor Q of the tank circuit for Q both below and above the value corresponding to the impedance matching between the coaxial cable and SET.Comment: 14 page

    Parallelization of the discrete gradient method of non-smooth optimization and its applications

    Full text link
    We investigate parallelization and performance of the discrete gradient method of nonsmooth optimization. This derivative free method is shown to be an effective optimization tool, able to skip many shallow local minima of nonconvex nondifferentiable objective functions. Although this is a sequential iterative method, we were able to parallelize critical steps of the algorithm, and this lead to a significant improvement in performance on multiprocessor computer clusters. We applied this method to a difficult polyatomic clusters problem in computational chemistry, and found this method to outperform other algorithms. <br /
    corecore