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Bounded Model Checking of Concurrent Data Types on Relaxed
Memory Models: A Case Study

Abstract
Many multithreaded programs employ concurrent data types to safely share data among threads. However,
highly-concurrent algorithms for even seemingly simple data types are difficult to implement correctly,
especially when considering the relaxed memory ordering models commonly employed by today’s
multiprocessors. The formal verification of such implementations is challenging as well because the high
degree of concurrency leads to a large number of possible executions. In this case study, we develop a SAT-
based bounded verification method and apply it to a representative example, a well-known two-lock
concurrent queue algorithm. We first formulate a correctness criterion that specifically targets failures caused
by concurrency; it demands that all concurrent executions be observationally equivalent to some serial
execution. Next, we define a relaxed memory model that conservatively approximates several common
shared-memory multiprocessors. Using commit point specifications, a suite of finite symbolic tests, a
prototype encoder, and a standard SAT solver, we successfully identify two failures of a naive implementation
that can be observed only under relaxed memory models. We eliminate these failures by inserting appropriate
memory ordering fences into the code. The experiments confirm that our approach provides a valuable aid for
desigining and implementing concurrent data types.
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Bounded Model Checking of Concurrent Data Types on
Relaxed Memory Models: A Case Study�

Sebastian Burckhardt, Rajeev Alur, and Milo M.K. Martin

Department of Computer Science
University of Pennsylvania

{sburckha, alur, milom}@cis.upenn.edu

Abstract. Many multithreaded programs employ concurrent data types to safely
share data among threads. However, highly-concurrent algorithms for even seem-
ingly simple data types are difficult to implement correctly, especially when con-
sidering the relaxed memory ordering models commonly employed by today’s
multiprocessors. The formal verification of such implementations is challeng-
ing as well because the high degree of concurrency leads to a large number of
possible executions. In this case study, we develop a SAT-based bounded ver-
ification method and apply it to a representative example, a well-known two-
lock concurrent queue algorithm. We first formulate a correctness criterion that
specifically targets failures caused by concurrency; it demands that all concurrent
executions be observationally equivalent to some serial execution. Next, we de-
fine a relaxed memory model that conservatively approximates several common
shared-memory multiprocessors. Using commit point specifications, a suite of
finite symbolic tests, a prototype encoder, and a standard SAT solver, we success-
fully identify two failures of a naive implementation that can be observed only
under relaxed memory models. We eliminate these failures by inserting appro-
priate memory ordering fences into the code. The experiments confirm that our
approach provides a valuable aid for desigining and implementing concurrent
data types.

1 Introduction

Shared-memory multiprocessor architectures dominate the server and scientific com-
puting market today and are even finding their way into desktop, laptop and gaming
machines. Nevertheless, programming such systems remains a challenge [1]. To cope
with the subtleties of concurrent program executions, software architects often intro-
duce abstraction layers in the form of concurrent data types.

Concurrent data types provide familiar data abstractions (such as queues, hash tables,
or trees) to client programs that have concurrently executing threads. The interface of
the data type specifies the operations. The implementation provides the actual code for
the operations; it hides the concurrency from the client program, using lower-level syn-
chronization primitives such as locks or semaphores as needed. To allow for more con-
currency and better performance, optimized implementations use fine-grained locking
or even avoid locks altogether by using lock-free synchronization techniques [2, 3, 4].
� Supported partially by NSF awards CCR 0306352 and CNS 0524059 and donations from Intel
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Writing correct and efficient code for concurrent data types is challenging. To make
matters worse, many contemporary shared-memory architectures use relaxed memory
ordering models [5]. For example, a processor may execute memory accesses in a dif-
ferent order than specified by the program, and stores may take effect locally before be-
coming visible to remote processors. Although regular “fully synchronized” programs
are not sensitive to the memory model, implementations that contain concurrency op-
timizations (such as intentional data races or lock-free synchronization) become ex-
posed to such ordering and atomicity relaxations. Because the resulting executions are
counterintuitive and nondeterministic, even highly skilled engineers are likely to make
programming errors when relying on informal reasoning and conventional testing only,
which motivates the use of formal verification.

The operations of the concurrent data type are invoked by a multi-threaded client
program and may execute concurrently on a multiprocessor. Our correctness criterion
is operation-level sequential consistency. It requires that all concurrent executions be
observationally equivalent to a serial execution, that is, an execution in which the opera-
tions execute atomically and in the order they are invoked by each thread. As we assume
that all serial executions reflect the semantics of the abstract data type correctly (which
can be verified independently using standard techniques for sequential programs), cor-
rectness in our sense implies that client programs always observe the correct semantics.
In particular, the data type is guaranteed to appear sequentially consistent to the client
program even if the underlying multiprocessor executions are not sequentially consis-
tent [6] on the instruction level.

To bound the number of threads, the state space, and the depth of the execution,
we consider client programs that make a fixed number of operation calls only. We
call these bounded instances symbolic tests. Furthermore, the user must specify com-
mit points [7], that is, single out an instruction within each operation such that the
logical order of the operations always matches the execution order of their commit
points. We qualify soundness and completeness of our approach as follows: (a) it can
prove correctness for all executions of the given symbolic test, and (b) it generates
counterexamples that are sound with respect to the chosen memory model and commit
point specification.

We encode the existence of a violating execution as a CNF instance that can be
solved or refuted by a standard SAT solver (corresponding to cases (b) and (a) above).
Our encoding combines several ideas that appear in prior work, such as loop unrolling
and SSA transformations [8] and axiomatic memory model encodings [9, 10].

We successfully applied our method to an example that represents optimized imple-
mentations of concurrent data types, the two-lock concurrent queue by Michael and
Scott [11]. First, we verified that the implementation code is correct for all symbolic
tests in our suite when executed on a sequentially consistent memory model. Next, our
prototype found two failures that can occur when the same code is executed on a relaxed
memory model. Guided by the counterexamples, we identified the problematic instruc-
tion reorderings and prevented them by inserting two memory ordering fences. Finally,
we verified that with these fences, the code executes correctly on a relaxed memory
model for all symbolic tests in the suite.
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1.1 Related Work

Most prior work on formal verification of concurrent data types assumes a sequentially
consistent memory model [12, 13, 14]. In that context, linearizability [15] is the correct-
ness criterion of choice. Unfortunately, its definition assumes that an execution globally
orders the operation invocations and returns, which is not well defined on relaxed mem-
ory models because instructions may be reordered across operation boundaries.

Model checking of assembly code snippets for relaxed memory models was first
attempted with explicit state enumeration [16, 17] using an operational memory model
and interleaving concurrency. More recently, constraint-based encodings of axiomatic
memory models have been proposed for memory-model sensitive race detection [9].
Our approach differs because we specifically target concurrent data types and because
we use operation-level sequential consistency as our correctness criterion.

2 The Challenge

Our verification target is the two-lock FIFO queue implementation [11] by Michael and
Scott (Fig. 1). We chose this example because of its optimized use of locks: the enqueue
and dequeue operations can proceed concurrently because they use independent locks.
This concurrency improves performance, but it also introduces a race condition if the
queue is empty. Race conditions sometimes indicate an improper locking discipline
[18], but as we see here, they may also be a side effect of concurrency optimizations.

We encountered several challenges in the course of our case study:

Avoiding State Explosion. An interleaving model of concurrency can lead to large state
spaces; relaxed memory models exacerbate this effect because they introduce additional
concurrency at the instruction level. Therefore, we decided against unrolling the transi-
tion relation and representing executions as global state sequences. Instead, we repre-
sent the program executed by each thread as a linear symbolic instruction stream, and
we encode the relative order of instructions using SAT variables.

Defining Memory Models. We compared the memory model specifications for the
IBM PowerPC [19], Sun SPARC v9 TSO/PSO/RMO [20], Alpha [21], and IBM zAr-
chitecture [22]. Although there are many differences, the specifications use similar rules
(axioms) to describe the valid memory orderings. By comparing the axioms, we derived
a generic relaxed memory model (to be defined in section 3.4) that provides a common
conservative approximation and abstracts unneeded details.

Encoding Memory Models. We can encode the memory model axioms directly be-
cause we have explicit representations of the instruction streams for each thread [9, 23].
In contrast, classic interleaving models based on labeled transition systems require a
prior conversion of the axiomatic specification into an operational style [16, 17].

Bounding Instances. To achieve a bounded formulation, we approximate admissible
client programs using a manually constructed suite of symbolic tests. Each test spec-
ifies a fixed, finite sequence of symbolic operation invocations for each thread. Un-
like deterministic tests, a symbolic test covers all possible instruction interleavings and
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structure node_t {
value: value_t;
next: ptr to node_t

}

structure queue_t {
head: ptr to node_t;
tail: ptr to node_t;
headlock: lock_t;
taillock: lock_t;

}
1 initialize(Q: ptr to queue_t)
2 // Make dummy node
3 node = new_node()
4 node->next = NULL
5 Q->head = Q->tail = node
6 Q->headlock = FREE
7 Q->taillock = FREE
8

9 enqueue(Q: ptr to queue_t,
10 value: value_t)
11 node = new_node()
12 node->value = value
13 node->next = NULL
14 lock(&Q->taillock)
15 Q->tail->next = node
16 Q->tail = node
17 unlock(&Q->taillock)

27 dequeue(Q: ptr to queue_t,
28 pvalue:ptr to value_t)
29 : boolean
30 lock(&Q->headlock)
31 node = Q->head
32 new_head = node->next
33 if new_head == NULL
34 // queue empty
35 unlock(&Q->headlock)
36 return false
37 endif
38 *pvalue = new_head->value
39 Q->head = new_head
40 unlock(&Q->headlock)
41 free(node)
42 return true

Fig. 1. Michael and Scott’s two-lock queue implementation [11]. The queue is represented by a
dynamically allocated singly linked list with head and tail pointers, each protected by a separate
lock. To simplify the empty queue case, the first node of the linked list is a “dummy” element: its
value is not part of the queue.

reorderings and all possible call arguments and return values. The total number of in-
structions executed during a test is bounded because the operations do not contain loops.
As a result, each test has a finite (albeit exponential) number of possible executions,
which explains how we avoid the undecidability of sequential consistency [24].

Representing Parameters. The implementation is parameterized by (a) the number of
threads, (b) the size of the queue, (c) the size of the instruction reordering window, and
(d) the number of distinct data values. As our formulation targets individual symbolic
tests with finitely many executions, we can easily find static bounds. For instance, the
number of threads is explicitly specified by the test, the queue size and the number of
data values never exceed the number of “enqueue” calls, and the instruction reorder
window need not be larger than the total number of instructions.

Avoiding Mixed Quantifiers. Our correctness criterion contains alternating quantifiers
(we ask if there exists a observationally equivalent serial execution for each concurrent
execution), which can not be directly encoded in SAT. We avoid this problem (at the
expense of some generality and automation) by asking the user to designate one in-
struction for each operation to be the commit point. If correctly specified, the order in
which the commit points execute matches the logical order of the operations. With this
additional information, we can construct a deterministic serial reference execution for
each concurrent execution. If the two executions are observationally equivalent in all
cases, we have shown that the implementation is sequentially consistent. If not, our tool
provides a counterexample trace that shows both executions, which may point out an
actual defect in the implementation or an incorrect commit point specification.



Bounded Model Checking of Concurrent Data Types on Relaxed Memory Models 493

Making Memory Accesses Explicit. The original algorithm (Fig. 1) uses a pseudo-
code notation similar to C. To accurately model synchronization instructions and the
effects of the memory model, we require a lower-level representation that makes the
loads and stores explicit. Our back-end prototype accepts a loop-free imperative in-
termediate language that has (a) a small syntax, (b) a well-defined semantics even for
weak memory models, and (c) supports modelling of spin loops, atomic blocks, and
assertions.

Translating the Code. We envision a tool that includes a front end that accepts a subset
of C and performs the translation automatically. However, for this case study, we used
a straightforward manual translation of the pseudo-code into our tool’s intermediate
language.

Modelling Locks and Detecting Deadlocks. The code for the two-lock queue makes
calls to lock() and unlock() without fully specifying their memory ordering se-
mantics. For reference, we use a lock implementation from an architecture manual [20]
that contains a spin loop, an atomic load-store primitive, and (partial) memory ordering
fences. We use a reduction for side-effect free spin loops that allows us to model a sin-
gle iteration of the spin loop only, while still covering all executions and detecting all
deadlocks caused by an improper locking discipline in the implementation.

Modelling Dynamic Memory Management. To model dynamic memory allocation,
we create an array of blocks, each with its own lock. The allocation call nondeterminis-
tically selects a free block and locks it. The deallocation call unlocks it again. The array
size is bounded by the number of “enqueue” calls in the symbolic test.

3 Solution

In this section, we formalize symbolic tests and our correctness criterion, we show how
to prove correctness or provide a counterexample for a given commit point specification,
and we formally define our memory model.

3.1 Symbolic Tests

A symbolic test T (A, B) specifies a finite sequence of operation invocations for each
thread. A is a set of symbolic variables that represents argument values passed to the

T (A,B)
thread 1: thread 2:
(b1, b2) = dequeue() enqueue(a2)
enqueue(a1) (b5, b6) = dequeue()
(b3, b4) = dequeue()

A = {a1, a2} and B = {b1, . . . , b6}

Meaning of the operations:

— enqueue(v)
adds value v to the queue

— dequeue() returns values (r, v)
if queue is empty, returns r = false;
otherwise, returns r = true and the
dequeued value v

Fig. 2. An example for a symbolic test T (A,B)
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operations, and B similarly represents values returned by the operations. For our queue
example, a symbolic client program T (A, B) may look as in in Fig. 2.

For a given symbolic test T (A, B), let VA be the set of valuations to the variables in
A, and let VB the set of valuations to the variables in VB . Given an implementation I , a
memory model Y , and a symbolic test T (A, B), we define the set RT,I,Y ⊂ VA × VB

to consist of all tuples (a, b) such that it is possible to observe the output values b
when executing the test T with implementation I and input values a on a machine with
memory model Y .

Let ΠT be the set of all total orders on the invocations in T . We say an order o ∈ ΠT

is consistent with T (written consistent T (o)) if and only if for all invocations made by
the same thread, the order in T matches the order o. Define the function gI,T : ΠT ×
VA → VB such that gI,T (o, a) describes the return values that result from executing the
invocations appearing in T in a single thread, in the order specified by o, and with input
values a. We guarantee that gI,T is a well-defined function as follows:

1. We admit only implementations I whose single-threaded executions are determin-
istic. Where we want nondeterminism (such as for modelling memory allocation),
we express it by declaring additional symbolic input values.

2. We assume that executions never deadlock. However, because deadlocks are well
possible in practice, we discharge this assumption separately by performing a prior
check for deadlocks using an independent SAT instance (which we do not describe
further here).

With the formalism introduced above we can now precisely define operation-level
sequential consistency for a given test T .

Formulation. The implementation I is correct for a given symbolic test T and a mem-
ory model Y if and only if for all (a, b) ∈ RT,I,Y , there exists an invocation order
o ∈ ΠT such that o is consistent with T and b = gI,T (o, a).

If an implementation is correct for all symbolic tests T , it is guaranteed to be free
of defects that are caused by concurrency; if it contains any other errors, those are
guaranteed to manifest themselves in some serial execution, and can therefore be easily
covered with conventional verification methods.

3.2 Encoding Concurrent Executions

Our first subgoal is to encode the concurrent executions in a way that is suitable for SAT
solving. We show in this section how to define auxiliary variables C, M and a formula
ΦT,I,Y (A, B, C, M) such that for all (a, b) ∈ VA × VB the following holds:

(a, b) ∈ RT,I,Y ⇔ ∃C : ∃M : ΦT,I,Y (a, b, C, M) (1)

The variable M represents the memory order; different valuations to M correspond
to different instruction interleavings (and possibly reorderings). C is a set of variables
that represent intermediate values of the computation. Each variable that represents
an input, intermediate, or return value is local to a thread k, and we partition A =⋃

k Ak, B =
⋃

k Bk, C =
⋃

k Ck accordingly. The formula ΦT,I,Y then decomposes
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(a) Implementation code for the (b) Symbolic instruction stream for
operation func the expanded invocation y = func(x)

var arr : array[8] of int

op func(int index) returns int
if (index < 0) then
return 0

else
return arr[index]

endif
endop

move (x < 0), c
[+c] move 0, r1
[-c] load arr[x], r2

move (c ? r1 : r2), y

(c) Corresponding formula over Ak = {x}, Bk = {y}, Ck = {c, r1, r2}
Δ(Ak, Bk, Ck) ≡ (c = (x < 0)) ∧ (r1 = 0) ∧ ((c ∧ (y = r1)) ∨ (¬c ∧ (y = r2)))

Fig. 3. Example of the thread-local encoding

into subformulas that represent the communication and the thread-local components
separately:

ΦT,I,Y (A, B, C, M) ≡ ΘT,I,Y (M, C) ∧
∧

k

ΔT,I,k(Ak, Bk, Ck) (2)

The Thread-Local Formulas. For each thread k, the formula ΔT,I,k captures the
connection among input values Ak, intermediate values Ck, and return values Bk: the
solutions to ΔT,I,k(Ak, Bk, Ck) correspond to all possible executions of thread k in an
unspecified environment (that is, for arbitrary values returned by the load instructions).
We obtain the encoding as follows (see Fig. 3 for an example):

– Expand the invocation sequence for thread k specified in T (A, B) by inlining the
implementation code I .

– Unroll loop iterations. We can skip this step for this case study (and avoid the
associated loss of precision) because the implementation code is already loop-free.

– Compile the code into a linear, finite instruction sequence consisting of loads,
stores, fences, and instructions that capture the thread-local computations. We call
the latter move instructions.

– Create a variable in Ck for each intermediate value produced by a load or move.
– For each move instruction, create constraints on the source and destination values

that express the nature of the computation. Take the conjunction of these constraints
to get the formula ΔT,I,k.

– If the code contains conditionals, use predicates to express conditional execution
of instructions. For each instruction i, define the predicate π(i) to be a boolean for-
mula over variables in Ck that captures the condition(s) under which this instruction
gets executed. Fig. 3 illustrates how to use predicates; we skip the further details of
the compilation algorithm here.
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The Communication Formula. The formula ΘT,I,Y (M, C) encodes the valid inter-
actions between the threads as they execute load, store, and fence instructions. It thus
captures the shared memory semantics of the multiprocessor, which is defined by the
memory model Y.

To encode ΘT,I,Y , we first create predicated instruction streams for each thread as
described in section 3.2. Let X be the set of all loads and stores appearing in these
streams. Let ΠX be the set of all total orders on X . Define the memory order variable
M to range over ΠX . We can now encode ΘT,I,Y such that its solutions have the
following properties: (a) the value loaded by a load matches the last value stored to the
same address (where “last” is interpreted in terms of the memory order M ), and (b) the
memory order M follows the ordering axioms of the memory model.

We give a full definition for the formula ΘT,I,Relaxed describing our relaxed memory
model in section 3.4; in the remainder of this section we discuss the similar but some-
what simpler case of a sequentially consistent multiprocessor only. For each memory
access x ∈ X , let π(x) be its predicate (a boolean formula over the variables in C that
captures the condition under which x gets executed), and let ax, vx ∈ C be the variables
that represent the address and data value of x, respectively. Let L ⊂ X be the set of
loads, and S ⊂ X be the set of stores. Let <p be the program order; that is, <p is a
partial order on X such that x <p y if and only if x, y are appear in the same stream,
and x comes before y. Then

ΘT,I,SeqCons(M, C) ≡
∀x, y ∈ X : (π(x) ∧ π(y) ∧ x <p y) ⇒ x <M y

∧ ∀l ∈ L : ∀s ∈ S : sees (l, s) ⇒ [ vl = vs ∨ (∃s′ ∈ S : sees (l, s′) ∧ s <M s′) ]

where sees (l, s) ≡ (π(l) ∧ π(s) ∧ (as = al) ∧ (s <M l))

(3)

The second line of (3) expresses that the memory order may not contradict the program
order, which is the essence of sequential consistency. The third line of (3) specifies that
a load gets the last value “seen”, that is, the last value stored to the same address. It uses
the subformula sees (l, s), which is defined on the last line of (3) and says that a load
“sees” a store if and only if it succeeds it in the memory order M , goes to the same
address, and both predicates are true.

The formula (3) still contains non-boolean variables and quantifiers. To obtain a CNF
representation, we (a) encode non-boolean variables in A, B, or C as bitvectors, (b)
expand quantifiers into finite conjunctions or disjunctions, and (c) break M down into
boolean variables {Mxy | x, y ∈ X} such that Mxy represents x <M y and add clauses
to express transitivity, antisymmetry and non-reflexivity. The number of variables and
clauses is then quadratic and cubic in |X |, respectively.

3.3 Encoding Correctness

We now show how to construct a formula Ψ such that (a) Ψ can be solved by a SAT
solver, (b) unsatisfiability of Ψ implies correctness, and (c) given a satisfying assign-
ment for Ψ , we can construct a counterexample trace. Such a trace shows a concurrent
execution for which the serial reference execution is not observationally equivalent.
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For a given test T and implementation I , a commit point specification h is understood
as a function ΠX → ΠT that maps a given memory order m to the invocation order
h(m) that reflects how m orders the commit points. Now we can define

ΨT,I,Y,h ≡ ∃A : ∃B : ∃C : ∃M : ΦT,I,Y (A, B, C, M) ∧
( gI,T (h(M), A) �= B ∨ ¬ consistent T (h(M)) )

(4)

To encode the subformula gI,T (h(M), A) �= B in (4), we create a copy T ′(A, B′) of
T (A, B) in which we put each invocation in a separate thread, and we define a special
“memory model” Atomic, which is similar to sequential consistency but executes each
thread atomically. Then gI,T (h(m), A) �= B if and only if

∃B′ : ∃C′ : ∃M ′ : ΦT ′,I,Atomic(A, B′, C′, M ′) ∧ h(M ′) = h(M) ∧ B �= B′ (5)

After substituting (5) into (4), we can move all existential quantifiers to the front as
required for SAT solving.

If the SAT solver determines that ΨT,I,Y,h is unsatisfiable, it follows directly from
the definitions that the implementation I is correct for the test T and memory model
Y (regardless of h). However, if the SAT solver provides a satisfying assignment for
ΨT,I,Y,h, our prototype presents the corresponding concurrent and serial executions to
the user. The user can then analyze the counterexample and determine whether there is
a defect in the implementation or a mistake in the commit point specification h.

3.4 Encoding Relaxed Memory Models

Relaxed memory models impose fewer ordering restrictions on the instruction streams
than sequential consistency; therefore RT,I,SeqCons ⊂ RT,I,L for all relaxed models L.
Finding a uniform specification framework for the puzzling variety of memory models
is a challenge of its own [25, 26]. For this case study, we restricted our attention to a
selection of memory models (listed in the next paragraph) that are commonly used by
hardware. Moreover, we are content with a conservative approximation, that is, a model
Relaxed such that RT,I,Y ⊂ RT,I,Relaxed for all memory models Y in our selection.

We compared the memory model specifications for the IBM PowerPC [19], Sun
SPARC v9 TSO/PSO/RMO [20], Alpha [21], and IBM zArchitecture [22]. Although
there are many differences, all of the specifications are based on a similar axiomatic
style: they consist of a collection of rules that describe the valid instruction orderings
and how values may flow from stores to loads. This non-operational style suits our
purpose well; it allows us to compare the different models and derive a common ap-
proximation Relaxed, which we now describe in detail.

First, let us describe the relaxations with respect to sequential consistency informally.
We use the symbols X , M , C, S, L, π(x), ax, vx, and <p as defined in section 3.2.

– Accesses to different locations by the same thread may be executed out of order: If
x, y ∈ X and x <p y and ax �= ay , we may have y <M x.

– Loads to the same location by the same thread may be executed out of order: If
l, l′ ∈ L and l <p l′ and al = al′ , we may have l′ <M l.
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– Stores may be non-atomic: the stored value may be held in a thread-local buffer
before becoming visible to other threads. We use <M to express the time at which
a store commits globally, and we adjust the definition of sees (l, s) to allow a load
to see stores in the buffer. For example, if s ∈ S and l ∈ L and s <p l and as = al,
we may have l <M s and sees (l, s).

Our formalization is similar to the Sparc RMO memory model axioms [16]. In fact,
our generic model is equivalent to the latter if we remove the RMO-specific axiom (m1)
that defines how value and control dependencies influence the memory order.

If a memory ordering fence instruction appears in between two memory accesses
in the code, they must execute in order. Fences affect only instructions in the same
thread, and there exist specific variations (such as load-load, load-store, store-load or
store-store fences) that target a subset of instructions only. Formally, let F to be the set
of memory fences appearing in all instruction streams, and for each fence f ∈ F , let
Xf ⊂ X be the set of accesses affected by f . For example, if f is a store-load fence,
then Xf = {s ∈ S | s <p f} ∪ {l ∈ L | f <p l}.

Now we are ready to define Relaxed formally. We do so by directly specifying

ΘT,I,Relaxed(M, C) ≡
∀x ∈ X : ∀s ∈ S : (π(x) ∧ π(s) ∧ ax = as ∧ x <p s) ⇒ x <M s

∧ ∀l ∈ L : ∀s ∈ S : sees (l, s) ⇒ vl = vs ∨ (∃s′ ∈ S : sees (l, s′) ∧ s <M s′)
∧ ∀f ∈ F : ∀x, y ∈ Xf : (π(f) ∧ π(x) ∧ π(y) ∧ (x <p f <p y)) ⇒ x <M y

where sees (l, s) ≡ π(l) ∧ π(s) ∧ (as = al) ∧ (s <M l ∨ s <p l)

(6)

The second line of (6) specifies the conditions under which the memory order may
not contradict the program order. When compared with the formula (3) for sequential
consistency, we see that this line has been weakened to reflect the ordering relaxations
we described earlier. The third line specifies that a load gets the last value “seen”, that
is, the last value stored to the same address. It is the same as for sequential consistency
(3), but the definition of sees (l, s) on the last line has been modified to allow forward-
ing. The fourth line of (6) defines the effect of memory fences on the valid memory
orderings.

The memory model Relaxed is simpler than most memory models used for ac-
tual hardware because (a) it consistently relaxes the order, for example, even data- or
control-dependent instructions may be reordered, and no special measures are taken to
prevent circular value flow, (b) it uses a single, generic memory ordering fence con-
struct, (c) it does not contain specific synchronization primitives, but allows them to be
expressed as atomic blocks (we omitted atomic blocks from the formalization above,
but they can introduced easily by adding suitable constraints on <M ), and (d) it omits
unneeded details such as the behavior of instruction caches and I/O, special flushing
operations, or unaligned and non-atomic memory accesses.

This (relative) simplicity makes Relaxed a good model for studying the algorithms:
even though it may exhibit executions that are not possible on a specific target archi-
tecture, we are made aware of all issues by verifying our code on Relaxed. Once we
understand which instructions need to stay in order, it is comparatively easy to pick the
right fences for a specific target architecture.
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Specialized algorithms to insert memory fences automatically during compilation
have been proposed [27, 28]. However, these methods are based on a conservative pro-
gram analysis, and they enforce sequential consistency on the instruction level rather
than the operation level. These characteristics make them unattractive for optimized
implementations, because redundant fences imply suboptimal performance [29].

4 Results

We implemented a prototype that encodes SAT instances as described in the previ-
ous chapter, solves them using zChaff [30], and converts satisfying assignments into
human-readable execution traces. We first tested our prototype on some smaller exam-
ples (including the spinlock [16]). Then we hand-translated the pseudo-code (Fig. 1)
into the intermediate language accepted by our back-end prototype. Next, we created a
suite of symbolic tests (Fig. 4) and made an initial guess at the commit points (lines 15
and 31 in Fig. 1).

Running our prototype, we found five problems (numbered 1–5 below). First, we ran
T0 on a sequentially consistent memory model, finding problem 1. Then, we ran T0 on
our relaxed memory model, finding problems 2–4. Next, we ran on T1 on the relaxed
model and found problem 5. After that, no more problems were found. The tests T0 and
T1 alone (neither of which took more than a few seconds) therefore uncovered all the
bugs found.

1. Incorrect commit point specification. We had guessed line 31 to be the commit
point. The tool produced a counterexample revealing a race between the store on
line 15 and the load on line 32. The outcome of this race determines the logical
order of the operations, so we changed the commit point for the dequeue to be line
32 instead of line 31.

2. Incorrect modelling of dynamic memory. Our initial model for dynamic memory
allocation was incorrect for relaxed memory models: the trace showed a load from a
storage location inside a dynamically allocated block that took effect only after the
block was freed, re-allocated by another thread, and then overwritten. This situation
caused the load to get the wrong value. We fixed this problem by inserting fences
into the alloc() and free() calls.

Program name T0 T1 T5-3 T5-4 T5-5 T5-6 Tpc4 Tpc6
Thread 1 sequence e e e e e e e e e e e e e e e e e e e e e e
Thread 2 sequence d e d e e e d d d d d d d d d d
Thread 3 sequence d d d e e
Thread 4 sequence d d d e
Thread 5 sequence d d
Thread 6 sequence d

Fig. 4. A selection of the symbolic tests we used. The letters e and d represent calls to the enqueue
and dequeue operation (with symbolic arguments). All calls operate on the same queue object.
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Program Characteristics SAT encoding Requirements
threads operations instructions loads stores variables clauses memory [kB] time [s]

T0 2 2 65 12 18 551 4,081 332 0.004
T1 4 4 119 23 30 1,514 44,479 4,165 0.87
T5-3 3 6 163 31 44 3,380 160,516 16,246 9.33
T5-4 4 6 163 31 44 3,400 167,456 16,308 21.1
T5-5 5 6 163 31 44 3,413 173,324 16,357 35.4
T5-6 6 6 163 31 44 3,419 179,109 16,401 42.8
Tpc2 2 4 119 23 30 1,504 42,829 4,151 0.139
Tpc3 2 6 173 34 42 3,717 170,116 16,320 5.23
Tpc4 2 8 227 45 54 5,797 430,445 33,372 45.7
Tpc5 2 10 281 56 66 8,315 877,624 100,462 300.0
Tpc6 2 12 335 67 78 11,271 1,549,090 131,087 886.3
Tpc7 2 14 389 78 90 12,394 2,438,721 n/a > 1000

Fig. 5. Some experimental data. All resource requirements are reported by the zChaff solver (ver-
sion 2004/11/15) and refer to unsatisfiable instances using a relaxed memory model. The tests
were run on a 3 GHz Pentium 4 desktop Linux PC.

3. Missing store-store fence. On a relaxed model, the store instruction that updates
the queued value (line 12) may be ordered after the load that is supposed to read it
(line 38). To force the store to take effect by the time the node is linked into the list,
we insert a store-store fence before the store on line 15.

4. Missing load-load fence. Symmetrically, we need to make sure that the load of the
queued value (line 38) does not take effect before the load of its address on line 32.
This may seem automatic — but some weak memory models (such as Alpha [21])
do not enforce in-order execution of loads, even if there is a value dependency [31].
Therefore, we insert a load-load memory fence after the load on line 32.

5. Incorrect modelling of locks. During the translation, we had misplaced one of
the fences within the code for unlock(). It appeared after instead of before
the committing store, where it is useless. Without proper fences in lock() and
unlock(), memory accesses can “escape” from the critical section.

Analysis. The results indicate that our method is efficient at finding errors in highly con-
current programs, but does not scale to long program executions. As expected, zChaff
was much quicker at solving satisfiable instances than at refuting unsatisfiable ones, but
the choice of the memory model seemed to have a negligible effect on the runtime. We
show some statistics about the programs and the resources required (for unsatisfiable
instances and the relaxed memory model) in Fig. 5. The results show that making the
programs longer (Tpc series, see Fig. 4 for definition) is more challenging for the solver
than making them more concurrent (T5 series). This result is not surprising because we
chose an encoding that specializes on highly concurrent executions.

5 Conclusions

Verifying the sequential consistency of a concurrent data type implementation on a
relaxed memory model presents a challenge because of the high degree of concurrency
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at the instruction level and the infinite state space. In this case study, we developed
a new SAT-based method that can solve a bounded formulation of this problem (using
finite symbolic tests and commit point annotations) and demonstrated its practical value
by applying it successfully to Michael and Scott’s two-lock queue implementation.

Future work includes exploring more example data structure implementations, elim-
inating the need for commit point specifications, automating the creation of a symbolic
test suite, improving the scalability with more efficient or incremental SAT encodings,
and developing a front end for the tool that would accept a subset of C as the specifica-
tion of the implementation.
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