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Abstract. In this paper we present a new test model written in SysML
and an associated blackbox test suite for the Ceiling Speed Monitor
(CSM) of the European Train Control System (ETCS). The model is
publicly available and intended to serve as a novel benchmark for inves-
tigating new testing theories and comparing the capabilities of model-
based test automation tools. The CSM application inputs velocity val-
ues from a domain which could not be completely enumerated for test
purposes with reasonable effort. We therefore apply a novel method for
equivalence class testing that – despite the conceptually infinite cardi-
nality of the input domains – is capable to produce finite test suites
that are complete (i.e. sound and exhaustive) for a given fault model. In
this paper, an overview of the model and the equivalence class testing
strategy is given, and tool-based evaluation results are presented. For the
technical details we refer to the published model and a technical report
that is also available on the same website.

Keywords: Model-based testing, Equivalence class partition testing,
SysML, European Train Control System ETCS, Ceiling Speed Moni-
toring

1 Introduction

In 2011 the model-based testing benchmarks website www.mbt-benchmarks.org
has been created. Its objective is to publish test models that may serve as chal-
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lenges or benchmarks for validating testing theories and for comparing the ca-
pabilities of model-based testing (MBT) tools [12]. In the present paper a novel
contribution to this website is presented, a SysML model of the Ceiling Speed
Monitor (CSM) which is part of the European Vital Computer (EVC), the on-
board controller of trains conforming to the European Train Control System
(ETCS) standard [4]. In the first part of this paper (Section 2) we give an intro-
duction into the CSM model.

The CSM represents a specific test-related challenge: its behaviour depends
on actual and allowed speed, and these have conceptually real-valued data do-
mains, so that – even when discretising the input space – it would be infeasible
to exercise all possible combinations of inputs on the system under test (SUT).
Therefore test strategies identifying finitely many representatives from the input
domains have to be applied when testing the CSM, and in this paper we focus on
equivalence class partition (ECP) testing. While ECP testing is well-adopted in
a heuristic manner in today’s industrial test campaigns, practical application of
equivalence class testing still lacks formal justification of the equivalence classes
selected and the sequences of class representatives selected as test cases: stan-
dard text books used in industry, for example [14], only explain the generation
of input equivalence class tests for systems, where the SUT reaction to an input
class representative is independent on the internal state. Moreover, the system-
atic calculation of classes from models, as well as their formal justification with
respect to test strength and coverage achieved, is not yet part of today’s best
practices in industry.

In contrast to this, formal approaches to equivalence class testing have been
studied in the formal methods communities; references to these results are given
in Section 5. In the second part of this paper (Section 3) we therefore describe a
recent formal technique for equivalence class testing and its application to testing
the CSM. The theoretical foundations of this strategy have been published by two
of the authors in [7]. The present paper illustrates its practical application and
presents first evaluation details using a prototype implementation in an existing
MBT tool (Section 4). This ECP strategy introduces test suites depending on
fault models. This well adopted notion has first been introduced in the field of
finite state machine (FSM) testing [13], but is also applicable to other formal
modelling techniques. A fault model consists of a reference model, a conformance
relation and a fault domain. The fault domain is a collection of models whose
behaviour may or may not be consistent with the reference model in the sense
of the conformance relation. The test suites generated by the ECP strategy
described here are complete with respect to the given fault model: each system
of the fault domain which conforms to the reference model will pass all the
generated tests (this means that the test suite is sound), and each system in the
fault domain that violates the conformity to the reference model will at least fail
once when tested according to the test suite (the test suite is exhaustive).

We use state transition systems (STS) for encoding the operational seman-
tics of concrete modelling formalisms like SysML. STS are widely known from
the field of model checking [3], because their extension into Kripke Structures



allows for effective data abstraction techniques. The latter are also applied for
equivalence class testing. Since state transition systems are a means for semantic
representation, testing theories elaborated for STS are applicable for all concrete
formalisms whose behavioural semantics can be expressed by STS. In [8] it is
shown how the semantics of general SysML models and models of a process al-
gebra are encoded as STS. In this paper we illustrate how this is achieved for
the concrete case of the CSM SysML model.

2 CSM Model Description

Functional Objectives. The European Train Control System ETCS relies on
the existence of an onboard controller in train engines, the European Vital Com-
puter EVC. Its functionality and basic architectural features are described in the
public ETCS system specification [4]. One functional category of the EVC covers
aspects of speed and distance monitoring, to accomplish the “. . . supervision of
the speed of the train versus its position, in order to assure that the train remains
within the given speed and distance limits.” [15, 3.13.1.1]. While displaying actual
and allowed speed to the train engine driver, the monitoring functions automat-
ically trigger the brakes in case of speed limit violations. Speed and distance
monitoring is decomposed into three sub-functions [15, 3.13.10.1.2], where only
one out of these three is active at a point in time: (1) Ceiling speed monitor-
ing (CSM) supervises the observance of the maximal speed allowed according
to the current most restrictive speed profile (MRSP)4. CSM is active while the
train does not approach a target (train station, level crossing, or any other
point that must be reached with predefined speed). (2) Target speed monitoring
(TSM) enforces speed restrictions applicable while the train brakes to a target,
for example, a track section where a significantly lower maximal speed has to be
observed. (3) Release speed monitoring (RSM) applies when the special target
“end of movement authority (EOA)” is approached, where the train must come
to a stop. RSM supervises the observance of the distance-depending so-called
release speed, when the train approaches the EOA and is allowed to drive at a
reduced speed.

The model presented here captures the CSM functionality.

Test Model Semantics. SysML test models are structured using blocks. At
the top-level, the model is decomposed into a block representing the SUT and
another one representing the test environment (TE); Fig. 1 shows this decom-
position for the CSM. Depending on the complexity of the model, blocks can be
further decomposed into lower-level block diagrams, until leaf blocks are reached
that are associated with behaviour. In our test models this behaviour is specified
by sequential hierarchic SysML state machines. Blocks execute concurrently and
in a synchronous way, so that transitions of concurrent state machines that are
enabled in the same model state execute simultaneously.

4 In some situations, more than one speed restriction may apply, and then the most
restrictive one has to be enforced.



The whole model executes according to the run-to-completion semantics de-
fined for state machines. The model is in a quiescent (or stable) state, if no
transition can be executed without an input change.

Fig. 1. System interface of the ceiling speed monitor.

In a quiescent model state, inputs may be changed. If these changes enable
a transition, the latter is executed. Since our SUT model is deterministic –
this is typical for sequential safety-critical applications – there is no necessity
to handle situations where several transitions are simultaneously enabled. The
executed transition, however, may lead to a transient state, that is, to a state
where another transition is enabled. In the run-to-completion semantics this
new transition is also executed, and so forth until a quiescent state is reached.



Conceptually, the consecutive execution of model transitions is executed in zero
time, so that input changes cannot happen until the next quiescent state has
been reached. Moreover, models admitting unbounded sequences of transitions
between transient states are considered as illegal, and this situation is called a
livelock failure.

Interfaces. The interfaces between SUT and its environment are specified in
the internal block diagram displayed in Fig. 1. All interfaces are represented as
flow ports. The environment writes to SUT input ports and reads from SUT
output ports.

Fig. 2. Block diagram with CSM (sequential behaviour).

Ceiling speed monitoring is activated and de-activated by the speed and
distance monitoring (SnD) coordination function that controls CSM, TSM, and
RSM: on input interface SnDMonitorIn, variable csmSwitch specifies whether ceil-
ing speed monitoring should be active (csmSwitch = 1) or passive, since target or
release speed monitoring is being performed (csmSwitch = 0). Furthermore, this
interface carries variable SBAvailable which has value 1, if the train is equipped
with a service brake. This brake is then used for slowing down the train if it
has exceeded the maximal speed allowed, but not yet reached the threshold for
an emergency brake intervention. If SBAvailable = 0, the emergency brake shall
be used for slowing down the train in this situation. Input SBAvailable is to be
considered as a configuration parameter of the train, since it depends on the
availability of the service brake hardware. Therefore this value can be freely
selected at start-of-test, but must remain constant during test execution.



Fig. 3. Ceiling speed monitoring state machine.

Input interface OdometryIn provides the current speed value estimated by the
odometer equipment in variable Vest. Input interface SpeedRestrictionIn provides
the current maximal velocity defined by the most restrictive speed profile in
variable VMRSP. Input interface NationalValuesIn provides a control flag for the
ceiling speed monitor: variable allowRevokeEB is 1, if after an emergency brake
intervention the brake may be automatically released as soon as the estimated
velocity of the train is again less or equal to the maximal speed allowed. Oth-
erwise (allowRevokeEB = 0) the emergency brakes must only be released after
the train has come to a standstill (Vest = 0). This input parameter is called a
“national value”, because it may change when a train crosses the boundaries
between European countries, due to their local regulations.

Output interface DMIOut sends data from the SUT to the driver machine
interface (DMI). It carries five variables. DMICmd is used to display the super-
vision status to the train engine driver: Value INDICATION may be initially
present when CSM is activated, but will be immediately overridden by one of
the values NORMAL, OVERSPEED, WARNING, or INTERVENTION, as soon
as ceiling speed monitoring becomes active. Value NORMAL is written by the



SUT to this variable as long as the ceiling speed is not violated by the current
estimated speed. Value OVERSPEED has to be set by the CSM as soon as con-
dition VMRSP < Vest becomes true. If the speed increases further (the detailed
conditions are described below), the indication changes from OVERSPEED to
WARNING, and from there to INTERVENTION. The latter value indicates that
either the train is slowed down until it is back in the normal speed range, or the
emergency brake has been triggered to stop the train. Furthermore, interface
DMIOut contains several speed-related variables that are displayed on the DMI.

Output interface TIOut specifies the train interface from the CSM to the
brakes, using variable TICmd. If TICmd = NO CMD, both service brakes (if ex-
istent) and emergency brakes are released. If TICmd = SERVICE BRAKE CMD,
the service brake is activated. If TICmd = EMER BRAKE CMD, the emergency
brake is triggered.

SUT Attributes and Operations. The CSM executes sequentially; therefore
the SUT block on the top-level interface diagram (Fig. 1) is refined to a single
block representing the CSM, as shown in Fig. 2. There, the SUT uses a local
attribute sbiCmd which carries value SERVICE BRAKE CMD, if the service brake
should be used for slowing down the train to the admissible speed. If the value
EMER BRAKE CMD is assigned to sbiCmd, the emergency brake will be triggered
in this situation.

Three supervision limits are computed to assist the driver in preventing auto-
mated service or emergency brake intervention by maintaining the speed within
certain limits. These limits depend on the MRSP, and they are calculated ac-
cording to [15] as follows.

dVwarning(VMRSP) =

{
min{ 13 + 1

30 · VMRSP, 5} if VMRSP > 110
4 if VMRSP ≤ 110

(1)

dVsbi(VMRSP) =

{
min{0.55 + 0.045 · VMRSP, 10} if VMRSP > 110
5.5 if VMRSP ≤ 110

(2)

dVebi(VMRSP) =

{
min{−0.75 + 0.075 · VMRSP, 15} if VMRSP > 110
7.5 if VMRSP ≤ 110

(3)

CSM Behavioural Specification. The behaviour of the ceiling speed monitor
is modelled by a hierarchic state machine that is associated with the SUT block
of Fig. 2. The top-level machine specifies the activation and de-activation of the
CSM during the interplay between CSM, TSM, and RSM. Due to the usual
space limitations, we consider here only the lower-level state machine CSM ON
modelling the behaviour of the active CSM, as displayed in Fig. 3.

Its execution starts in basic state NORMAL, where the ‘NORMAL’ indication
is displayed on the DMI and brakes are released (TICmd = NO CMD). When
the speed increases above the maximal speed allowed (Vest > VMRSP), the state



machine transits to basic state OVERSPEED, where the ‘OVERSPEED’ indica-
tion is displayed to the train engine driver. If the train continues overspeeding
until the warning threshold VMRSP + dVwarning(VMRSP) is exceeded, a transition
into the WARNING state is performed, accompanied by an indication change on
the DMI. Accelerating further until Vest > VMRSP +dVsbi(VMRSP) leads to a tran-
sition into basic state SERVICE BRAKE, where either the service brake or the
emergency brake is triggered, depending on the value stored before in variable
sbiCmd. The DMI display changes to ‘INTERVENTION’.

The intervention status is realised by two basic state machine states, SER-
VICE BRAKE and EMER BRAKE. From SERVICE BRAKE it is still possible to
return to NORMAL, as soon as the speed has been decreased below the over-
speeding threshold. When the train, however, continues its acceleration until the
emergency braking threshold has been exceeded (Vest > VMRSP + dVebi(VMRSP)),
basic state EMER BRAKE is entered. From there, a state machine transition to
NORMAL is only possible if the train comes to a standstill, or if the national
regulations (variable allowRevokeEB) allow to release the brakes as soon as over-
speeding has stopped.

Observe that the run-to-completion semantics of state machines also allows
for zero-time transitions from, for example, NORMAL to EMER BRAKE. If, while
in basic state NORMAL, the inputs change such that Vest > VMRSP+dVebi(VMRSP)
becomes true5, the state machine transition from NORMAL to OVERSPEED
leads to a transient model state, because guard condition Vest > VMRSP +
dVwarning(VMRSP) is already fulfilled, and the state machine transits to WARNING.
Similarly, guards Vest > VMRSP + dVsbi(VMRSP) and Vest > VMRSP + dVebi(VMRSP)
also evaluate to true, so that the next quiescent state is reached in basic state
EMER BRAKE.

Full Model Description and Requirements Tracing. The complete SysML
model of the CSM function is publicly available6. A comprehensive description
can be found in the technical report [1] which is also available on this website.
The SysML modelling formalism supports the specification of relationships be-
tween requirements and model elements contributing to their realisation. This
allows for requirements-driven testing: test cases supporting the verification of a
given requirement have to cover the model elements contributing to the require-
ment. In [1] the CSM requirements and the tracing from requirements to model
elements, as well as an extended model description are presented.

5 This would be an exceptional behaviour situation, caused, for example, by temporary
unavailability of odometry data, so that a “sudden jump” of Vest would be observed
by the CSM.

6 http://www.mbt-benchmarks.org



3 Equivalence Class Partition Testing Strategy

The theoretical foundations of the equivalence class partition testing method
applied in this paper have been described in [7]. In this section we summarise
the results obtained there and show how they are applied for testing the CSM.

System Domain. We consider models and SUT whose true behaviour can be
represented by state transition systems STS (S, s0, R) with state space S, initial
state s0 ∈ S and transition relation R ⊆ S × S. States s ∈ S are valuation
functions s : V → D, where V is a set of variable symbols and D =

⋃
v∈V Dv,

where Dv is the domain of variable v, and s(v) ∈ Dv holds for every v ∈ V
and s ∈ S. The variable space V is finite and can be partitioned into disjoint
sets V = I ∪ M ∪ O called input variables, (internal) model variables, and
output variables, respectively. The domains of input variables can be infinite,
but those of model variables and output variables must be finite. The transition
relation R ⊆ S×S may be infinite, since we allow for infinite input data domains.
Admissible STS allow for partitioning of state spaces into quiescent and transient
states, S = SQ ∪ ST , SQ ∩ ST = ∅. In a quiescent state s1 ∈ SQ only input
changes can occur, leading either to another quiescent, or to a transient post-
state s2. The inputs can then change in an arbitrary way, but the internal and
output variables remain unchanged. Transient states s1 ∈ ST have uniquely
defined quiescent post-states s2 ∈ SQ, and during the transition from s1 to s2
only internal variable states and outputs change. The initial state s0 must be an
element of SQ.

We use initial STS state s0 to model the quiescent state when “the system is
switched off”. From there, some input change will drive the STS into the state s
the system assumes after initialisation. This state may depend on the new input
valuation, so our STS can very well model situations where the initial behaviour
depends on the input that is present on system initialisation.

In the exposition below, variable symbols x,m, y are used with the con-
vention that x ∈ I,m ∈ M,y ∈ O, and the symbols can be enumerated as
I = {x1, . . . , xk}, M = {m1, . . . ,mp}, O = {y1, . . . , yq}. We use notation
x = (x1, . . . , xk), s(x) = (s(x1), . . . , s(xk)), DI = Dx1

× · · · × Dxk
denotes

the cartesian product of the input variable domains. Tuples m,y and DM and
DO are defined over model variables and outputs in an analogous way. By
s ⊕ {x 7→ c}, c ∈ DI we denote the state s′ which coincides with s on all
variables from M ∪O, but returns values s′(xi) = ci, i = 1, . . . , k for the input
symbols.

I/O-Equivalence. Applying a trace ι = c1 . . . cn of input vectors ci ∈ DI to a
STS (S, s0, R) residing in some quiescent state s ∈ S, this stimulates a sequence
of state transitions with associated output changes as triggered by the inputs.
Restricting this sequence to quiescent states, this results in a trace of states τ =
s1.s2 . . . sn such that si(x) = ci, i = 1, . . . , n, and si(y) is the last STS output
resulting from application of c1 . . . ci to state s. This trace τ is generally denoted



by s/ι. The restriction of s/ι to output variables is denoted by (s/ι)|O. Since
transient states have unique quiescent post-states, the restriction to quiescent
states does not result in a loss of information, if the input trace ι is known: the
omitted transient states are some elements of s⊕{x 7→ c1}, . . . , sn−1⊕{x 7→ cn},
and these states satisfy R(s⊕ {x 7→ c1}, s1), . . . , R(sn−1 ⊕ {x 7→ cn}, sn).

Two states s, s′ are I/O-equivalent, written s ∼ s′, if every non-empty in-
put trace ι, when applied to s and s′, results in the same outputs, that is,
(s/ι)|O = (s′/ι)|O. Two STS S,S ′ are I/O-equivalent, if their initial states
are I/O-equivalent. Note that for technical reasons, s ∼ s′ still admits that
s|O 6= s′|O.

Input Equivalence Class Partitions. Since I/O-equivalence is an equivalence
relation, we can factorise STS state spaces by ∼, and the resulting equivalence
classes A ∈ S/∼ have the property that all s, s′ ∈ A yield the same output traces
(s/ι)|O = (s′/ι)|O for arbitrary non-empty input traces ι. For systems like the
CSM, the number of classes A is finite, so we can enumerate S/∼ = {A1, . . . , Ar}.
For every s ∈ Ai, applying an input c ∈ DI will lead to a quiescent target state
denoted by (s//c) in the unique target class Aj . Index j only depends on (i, c),
since for s, s′ ∈ Ai all corresponding states sk, s

′
k in s/ι = s1.s2 . . . .sn, s

′/ι =
s′1.s

′
2 . . . .s

′
n are I/O-equivalent for any ι = c1 . . . cn, k = 1, . . . , n. Therefore

(s//c) ∈ Aj if and only if (s′//c) ∈ Aj . One class Aj , however, may contain
elements s ∼ s′ with different outputs, since I/O-equivalence only states that
all future outputs will be identical, when applying the same non-empty input
trace to s, s′. Since DO = {d1, . . . ,d|DO|} is finite, we can associate the value
index h ∈ {1, . . . , |DO|} with the target class Aj , if (s//c)|O = dh. Again, h only
depends on (i, c), but not on the choice of s ∈ Ai.

Applying c to elements from all classes A1, . . . , Ar, results in (not necessarily
distinct) index pairs j(c, i), h(c, i), i = 1, . . . , r. This induces a factorisation of
the input domain DI : define X(c) ⊆ DI as the maximal set containing c, such
that j(c′, i) = j(c, i) ∧ h(c′, i) = h(c, i), i = 1, . . . , r, holds for all c′ ∈ X(c).

Then the Input Equivalence Class Partitioning (IECP) I = {X(c) | c ∈ DI}
has the following properties: (1) The elements of I are pairwise disjoint, (2) The
union of all X ∈ I equals DI , (3) I is finite, and (4) for all s ∈ Ai, c ∈ X,
target states (s//c) are contained in the same target class Aj(i,c) and have the
unique output value dh(i,c). Furthermore, each pair of input traces ι = c1 . . . cn,
ι′ = c′1 . . . c

′
n, when applied to the same state s, lead to the same output traces

(s/ι)|O = (s/ι′)|O, if c′i ∈ X(ci) for each i = 1, . . . , n.

A given IECP I can be refined by selecting input sets I2 = {X1, X2, . . . }
such that I2 also fulfils the above properties (1), (2), (3), and such that every
Xi is a subset of some X ∈ I. If these conditions hold, I2 inherits property (4).
Refinement is obviously reflexive, transitive and anti-symmetric.

Fault Model. As reference models we use the STS representations S of models
elaborated in concrete formalisms – like the CSM model presented in this paper



– such that the expected behaviour of the SUT is specified by S up to I/O-
equivalence. We use I/O-equivalence as conformance relation. The fault domain
D specifies the set of potential systems under test, whose true behaviour can be
represented by an STS S ′ ∈ D. For the equivalence class testing strategy, the
fault domain depends on the reference model S and two additional parameters
m ∈ N and a refinement I2 of I, the IECP associated with S. D(S,m, I2)
contains all S ′ satisfying

1. The states of S ′ are defined over the same variable space V = I ∪M ∪O as
defined for the model S.

2. Initial state s′0 of S ′ coincides with initial state s0 of S on I ∪O.
3. S ′ generates only finitely many different output values and internal state

values.
4. The number of I/O-equivalence classes of S ′ is less or equal m.
5. Let I ′ be the IECP of S ′ as defined above. Then

∀X ∈ I, X ′ ∈ I ′ :
(
X ∩X ′ 6= ∅⇒ ∃X2 ∈ I2 : X2 ⊆ X ∩X ′

)
6. S ′ has a well-defined reset operation allowing to re-start the system, in order

to perform another test from its initial state.

Requirement 2 is reasonable, since initial states correspond to the system’s
switched-off state. Therefore we can assume that the implementation produces
the same outputs as the reference model as long as it is switched off – otherwise
we would not start testing, because S and S ′ differed already in the off-state.

The intuition behind requirement 5 is as follows: for every X ∈ I the model S
exhibits equivalent behaviour for every input from X. Non-conforming members
S ′ of the fault domain may have a different partitioning I ′ 6= I. Then there will
be some non-empty intersections X ∩ X ′ 6= ∅, X ′ ∈ I ′ that contain inputs for
which S and S ′ exhibit different behaviour. It is ensured by requirement 5 that
our refined partitioning I2 has a member X2 contained in this intersection. This
guarantees that an input from X∩X ′ will be applied in the test suite introduced
below.

The fault domain D(S,m, I2) is obviously increased by increasing m ∈ N,
and/or further refining I2: m′ ≥ m∧I3 refines I2 ⇒ D(S,m, I2) ⊆ D(S,m′, I3).

Complete Test Strategy. The main result of the paper [7] states that, given
reference model S and fixing (m, I2), it is possible to generate a finite test suite
from S, such that (a) this suite accepts every member of D(S,m, I2) which is
I/O-equivalent to S, and (b) at least one test of this suite fails for every non-
conforming member of D(S,m, I2) which violates the I/O-equivalence condition.
Test suites satisfying (a) are called sound, and those satisfying (b) are called
exhaustive. Soundness and exhaustiveness together is called complete. The test
suite is generated as follows.

1. Select one representative input vector cX ∈ X from each X ∈ I2.



2. Abstract S to a finite deterministic state machine M with I/O-equivalence
classes A1, . . . , Ar as states, input alphabet {cX | X ∈ I2} and output
alphabet DO (recall that DO is finite). This DFSM is well-defined due to
the properties of the A ∈ S/∼ and the X ∈ I2.

3. SinceM is a DFSM, the well known W-Method [16, 2] can be used to create
a test suite that is complete with respect to reference model M, confor-
mance relation DFSM-equivalence, and the set of all DFSM over the same
input/output alphabets as fault domain, whose numbers of states do not
exceed m.

4. A STS S ′ is I/O-equivalent to S if and only if its DFSM M′ passes these
tests, so that M′ is DFSM-equivalent to M.

4 Evaluation

The coarsest IECP I for the CSM model has 6 IECs X1, . . . , X6; their defining
conditions over the input variables are displayed in Table 1. This table also shows
the input alphabet, consisting of one input vector selected from each class. It
can be easily checked that in a given CSM model state, all inputs from a given
Xi lead to the same outputs and into I/O-equivalent quiescent target states.

Table 1. Input Alphabet AI .

ci Vest VMRSP allowRevokeEB Xi specified by

c1 60 90 0 X1 0 < Vest ≤ VMRSP ∧ allowRevokeEB = 0

c2 60 90 1 X2 Vest = 0 ∨ (Vest ≤ VMRSP ∧ allowRevokeEB = 1)

c3 152 150 0 X3 VMRSP < Vest ≤ VMRSP + dVwarning(VMRSP)

c4 125 120 1 X4 VMRSP + dVwarning(VMRSP) < Vest ≤ VMRSP + dVsbi(VMRSP)

c5 66 60 0 X5 VMRSP + dVsbi(VMRSP) < Vest ≤ VMRSP + dVebi(VMRSP)

c6 260 230 0 X6 VMRSP + dVebi(VMRSP) < Vest

The DFSM used for test suite generation according to the W-method is shown
in Fig. 4. The complete test suites for the fault domain D(S,m = 6, I2 = I)
derived by application of the W-method are shown in Table 2. The specification
of m = 6 implies that the domain contains all models whose minimised DFSM
representation contains at most two more states than that of the reference model,
as shown in Fig. 4.

The tool-based evaluation has been performed with RT-Tester, an indus-
trial strength MBT tool [11] which has been enhanced by a prototype extension
supporting IECP test generation as described above. This tool encodes test ob-
jectives as propositional formulas, and an SMT solver calculates solutions from
which the concrete test data, i.e., the input vectors to the SUT, can be ex-
tracted. RT-Tester has been used to generate various test suites from the CSM



Normal or 
Overspeed

Warning Service Brake 
Intervention

Emergency 
Brake 

Intervention

~c3/(2, 0)~c1,~c2/(0, 0)

~c4/(3, 0)
~c1,~c2/(0, 0) ~c1,~c2/(0, 0)

~c2/(0, 0)

~c5/(4, 2 � sb0)

~c6/(4, 2)

~c6/(4, 2)

~c6/(4, 2)~c5/(4, 2 � sb0)

~c1,~c3,~c4,~c5,~c6/(4, 2)~c3,~c4/(3, 0)

~c3,~c4,~c5/(4, 2 � sb0)

Fig. 4. DFSM abstraction of the CSM. Output assignment actions
(DMICmd,TICmd) = (α, β) are written as (α, β). The DMICmd are written as 0
for no indication, 2 for overspeed indication, 3 for warning, and 4 for intervention
indication. The TICmd are written as 0 for brakes released, 1 for service brake
triggered, and 2 for emergency brake triggered.

model, following different coverage criteria: (1) basic state coverage, (2) tran-
sition coverage, (3) MC/DC coverage, (4) hierarchic transition coverage for an
extended CSM model version including the activation and deactivation of the
CSM, (5) requirements-driven test cases, constructed from the links from ETCS
requirements to model elements, (6) the IECP test suites shown in Table 2, and
(7) a more detailed IECP test suite based on a refinement I2 of I with 69 in-
put equivalence classes, leading to 273 test cases: Usage of the coarsest IECP
I2 = I specified in Table 1 is adequate if a fault domain is applicable, where
all representatives use the same guard conditions as the reference model. Then
conformity violations can only occur in output calculations, but never in con-
trol decisions. Refined IECPs are necessary, as soon as potential errors in guard
conditions have to be taken into account.

Test strategies (1) — (5) uncover at most 2 out of three mutants by “acci-
dentally” using input data revealing the deviations from the reference models:
the nature of the mutants was such that none of these strategies can guarantee
to find the mutations used. None of these strategies are able to uncover the third
mutation, not even the test suite (5) which yields 100% requirements coverage
(see [1, Table 17] for a more detailed specification of the mutants). As expected,
test suites (6) and (7) kill all three mutants. For all test suites (1) — (7) the



Table 2. Complete test suite for D(S,m = 6, I2 = I). TEST SUITEsb0=1 applies to
the case where trains are equipped with a separate service brake. TEST SUITEsb0=0

applies to train configurations where no separate service brake is available, so that only
the emergency brake is used.

TEST SUITEsb0=1 = {ci.cj .ck.c3 | i, j, k = 1, . . . , 6} ∪
{cj .ci.ck.ch.c3 | h, i, k = 1, . . . , 6, j = 4, . . . , 6}

TEST SUITEsb0=0 = {ci.cj .ch.cg | h, i, j = 1, . . . , 6, g = 1, 3} ∪
{cj .ci.ck.ch.cg | h, i, k = 1, . . . , 6, j = 4, . . . , 6, g = 1, 3}

automated test suite generation time is below 60 seconds. These results are sum-
marised in Table 3.

Table 3. Experimental results (see www.mbt-benchmarks.org for more details)

Test-Procedure Mutant 1 Mutant 2 Mutant 3 Generation Time [s]

Strategy (1) not detected not detected not detected ≤ 60

Strategy (2) KILLED KILLED not detected ≤ 60

Strategy (3) not detected not detected not detected ≤ 60

Strategy (4) KILLED KILLED not detected ≤ 60

Strategy (5) KILLED KILLED not detected ≤ 60

IECP Strategy (6) KILLED KILLED KILLED ≤ 60

IECP Strategy (7) KILLED KILLED KILLED ≤ 60

5 Related Work

The test method described and illustrated in this paper is a specific instance of
partition testing approaches, where the input domains of the SUT are divided
into subsets, and small numbers of candidates are chosen from each of these
sets [9]. The formalisation of equivalence classes is typically based on a uniformity
hypothesis as introduced in [5]. The idea to use data abstraction for the purpose
of equivalence class definition has been originally introduced in [6], where the
classes are denoted as hyperstates, and the concept is applied to testing against
abstract state machine models. Complete test suites have been suggested there
for grey box scenarios, while our approach considers black-box tests.

Applications of model-based testing in the railway domain are currently in-
vestigated by numerous research groups and enterprises. In [1, Section 12] sev-
eral references are given, and also alternative approaches to tool support are
discussed.

The detailed formal behavioural semantics of general SysML test models has
been described in [8, pp. 88]. This semantics is consistent with the standard [10],



but fixes certain semantic variation points in ways that are admissible according
to the standards. In [1, Section 4], the formal semantics of the CSM is presented
by specifying the model’s transition relation in propositional form. Furthermore,
additional details are presented for the IECP I introduced above [1, Section 5],
and IECP refinement alternatives I2 are discussed [1, Section 6, 10].

6 Conclusion and Ongoing Work

In this paper, a SysML model for the Ceiling Speed Monitor of the ETCS on-
board controller has been presented and made publicly available on the website
www.mbt-benchmarks.org, for the purpose of testing theory evaluation and MBT
tool comparisons. A novel equivalence class testing strategy has been applied to
derive tests from the CSM model in an automated way. This strategy allows
test suite creation depending on a given fault model and guarantees complete-
ness of the generated suites for all members of the associated fault domain. The
evaluation shows that for certain types of mutants, the equivalence class testing
strategy is significantly stronger than that of other test strategies, such as model
transition coverage or MC/DC coverage.

The usage of SysML was motivated by the fact that this modelling language is
very well accepted in industrial applications. It is therefore one of the main mod-
elling formalisms used in the ITEA2 project openETCS7 and the FP7 project
COMPASS8.

The mutations used for the evaluation in this paper were mainly constructed
for illustration purposes. Currently, we are evaluating the test strength of IECP
test suites in comparison with other model coverage criteria with large numbers
of mutants created by a random generator that mutates models and creates
executable “SUT” code from each mutation. These results will also be published
on www.mbt-benchmarks.org.
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