1,063 research outputs found

    The GOAL study: a prospective examination of the impact of factor V Leiden and ABO(H) blood groups on haemorrhagic and thrombotic pregnancy outcomes

    Get PDF
    Factor V Leiden (FVL) and ABO(H) blood groups are the common influences on haemostasis and retrospective studies have linked FVL with pregnancy complications. However, only one sizeable prospective examination has taken place. As a result, neither the impact of FVL in unselected subjects, any interaction with ABO(H) in pregnancy, nor the utility of screening for FVL is defined. A prospective study of 4250 unselected pregnancies was carried out. A venous thromboembolism (VTE) rate of 1·23/1000 was observed, but no significant association between FVL and pre-eclampsia, intra-uterine growth restriction or pregnancy loss was seen. No influence of FVL and/or ABO(H) on ante-natal bleeding or intra-partum or postpartum haemorrhage was observed. However, FVL was associated with birth-weights >90th centile [odds ratio (OR) 1·81; 95% confidence interval (CI<sub>95</sub>) 1·04–3·31] and neonatal death (OR 14·79; CI<sub>95</sub> 2·71–80·74). No association with ABO(H) alone, or any interaction between ABO(H) and FVL was observed. We neither confirmed the protective effect of FVL on pregnancy-related blood loss reported in previous smaller studies, nor did we find the increased risk of some vascular complications reported in retrospective studies

    Tick holocyclotoxins trigger host paralysis by presynaptic inhibition

    Get PDF
    Ticks are important vectors of pathogens and secreted neurotoxins with approximately 69 out of 692 tick species having the ability to induce severe toxicoses in their hosts. The Australian paralysis tick (Ixodes holocyclus) is known to be one of the most virulent tick species producing a flaccid paralysis and fatalities caused by a family of neurotoxins known as holocyclotoxins (HTs). The paralysis mechanism of these toxins is temperature dependent and is thought to involve inhibition of acetylcholine levels at the neuromuscular junction. However, the target and mechanism of this inhibition remain uncharacterised. Here, we report that three members of the holocyclotoxin family; HT-1 (GenBank AY766147), HT-3 (GenBank KP096303) and HT-12 (GenBank KP963967) induce muscle paralysis by inhibiting the dependence of transmitter release on extracellular calcium. Previous study was conducted using extracts from tick salivary glands, while the present study is the first to use pure toxins from I. holocyclus. Our findings provide greater insight into the mechanisms by which these toxins act to induce paralysis

    Planar Supersymmetric Quantum Mechanics of a Charged Particle in an External Electromagnetic Field

    Full text link
    The supersymmetric quantum mechanics of a two-dimensional non-relativistic particle subject to external magnetic and electric fields is studied in a superfield formulation and with the typical non-minimal coupling of (2+1) dimensions. Both the N=1 and N=2 cases are contemplated and the introduction of the electric interaction is suitably analysed.Comment: V3-Improved by Referees' sugestions. REVTeX4 6 pages (twocolumn option), no figures. V2-Minor changes. A previous version of this work was presented by JAHN during the II Intern. Conf. on Fundamental Interactions, June 2004, Pedra Azul-ES, Brazil. Submitted to Phys. Rev.

    Generalized measurements by linear elements

    Get PDF
    I give a first characterization of the class of generalized measurements that can be exactly realized on a pair of qudits encoded in indistinguishable particles, by using only linear elements and particle detectors. Two immediate results follow from this characterization. (i) The Schmidt number of each POVM element cannot exceed the number of initial particles. This rules out any possibility of performing perfect Bell-measurements for qudits. (ii) The maximum probability of performing a generalized incomplete Bell-measurement is 1/2.Comment: 4 pages. Submitted to Phys. Rev.

    Stationary solutions of the one-dimensional nonlinear Schroedinger equation: I. Case of repulsive nonlinearity

    Full text link
    All stationary solutions to the one-dimensional nonlinear Schroedinger equation under box and periodic boundary conditions are presented in analytic form. We consider the case of repulsive nonlinearity; in a companion paper we treat the attractive case. Our solutions take the form of stationary trains of dark or grey density-notch solitons. Real stationary states are in one-to-one correspondence with those of the linear Schr\"odinger equation. Complex stationary states are uniquely nonlinear, nodeless, and symmetry-breaking. Our solutions apply to many physical contexts, including the Bose-Einstein condensate and optical pulses in fibers.Comment: 11 pages, 7 figures -- revised versio

    New hadrons as ultra-high energy cosmic rays

    Get PDF
    Ultra-high energy cosmic ray (UHECR) protons produced by uniformly distributed astrophysical sources contradict the energy spectrum measured by both the AGASA and HiRes experiments, assuming the small scale clustering of UHECR observed by AGASA is caused by point-like sources. In that case, the small number of sources leads to a sharp exponential cutoff at the energy E<10^{20} eV in the UHECR spectrum. New hadrons with mass 1.5-3 GeV can solve this cutoff problem. For the first time we discuss the production of such hadrons in proton collisions with infrared/optical photons in astrophysical sources. This production mechanism, in contrast to proton-proton collisions, requires the acceleration of protons only to energies E<10^{21} eV. The diffuse gamma-ray and neutrino fluxes in this model obey all existing experimental limits. We predict large UHE neutrino fluxes well above the sensitivity of the next generation of high-energy neutrino experiments. As an example we study hadrons containing a light bottom squark. These models can be tested by accelerator experiments, UHECR observatories and neutrino telescopes.Comment: 17 pages, revtex style; v2: shortened, as to appear in PR

    Ultra-High Energy Neutrino Fluxes and Their Constraints

    Full text link
    Applying our recently developed propagation code we review extragalactic neutrino fluxes above 10^{14} eV in various scenarios and how they are constrained by current data. We specifically identify scenarios in which the cosmogenic neutrino flux, produced by pion production of ultra high energy cosmic rays outside their sources, is considerably higher than the "Waxman-Bahcall bound". This is easy to achieve for sources with hard injection spectra and luminosities that were higher in the past. Such fluxes would significantly increase the chances to detect ultra-high energy neutrinos with experiments currently under construction or in the proposal stage.Comment: 11 pages, 15 figures, version published in Phys.Rev.
    • …
    corecore