668 research outputs found

    Cell Phones as Tracking Devices

    Get PDF

    Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    Get PDF
    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station

    The Myth of Cyberwar: Bringing War in Cyberspace Back Down to Earth

    Get PDF
    Cyberwar has been described as a revolution in military affairs, a transformation of technology and doctrine capable of overturning the prevailing world order. This characterization of the threat from cyberwar, however, reflects a common tendency to conflate means and ends; studying what could happen in cyberspace (or anywhere else) makes little sense without considering how conflict over the internet is going to realize objectives commonly addressed by terrestrial warfare. To supplant established modes of conflict, cyberwar must be capable of furthering the political ends to which force or threats of force are commonly applied, something that in major respects cyberwar fails to do. As such, conflict over the internet is much more likely to serve as an adjunct to, rather than a substitute for, existing modes of terrestrial force. Indeed, rather than threatening existing political hierarchies, cyberwar is much more likely to simply augment the advantages of status quo powers. </jats:p

    Corollary discharge promotes a sustained motor state in a neural circuit for navigation

    Get PDF
    Animals exhibit behavioral and neural responses that persist on longer timescales than transient or fluctuating stimulus inputs. Here, we report that Caenorhabditis elegans uses feedback from the motor circuit to a sensory processing interneuron to sustain its motor state during thermotactic navigation. By imaging circuit activity in behaving animals, we show that a principal postsynaptic partner of the AFD thermosensory neuron, the AIY interneuron, encodes both temperature and motor state information. By optogenetic and genetic manipulation of this circuit, we demonstrate that the motor state representation in AIY is a corollary discharge signal. RIM, an interneuron that is connected with premotor interneurons, is required for this corollary discharge. Ablation of RIM eliminates the motor representation in AIY, allows thermosensory representations to reach downstream premotor interneurons, and reduces the animal\u27s ability to sustain forward movements during thermotaxis. We propose that feedback from the motor circuit to the sensory processing circuit underlies a positive feedback mechanism to generate persistent neural activity and sustained behavioral patterns in a sensorimotor transformation

    Critical Structural and Functional Roles for the N-Terminal Insertion Sequence in Surfactant Protein B Analogs

    Get PDF
    Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., approximately residues 8-25 and 63-78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1-7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity.FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary alpha-helix and secondary beta-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a "saposin-like" fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B.Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B

    Living with AIDS in Uganda: a qualitative study of patients' and families' experiences following referral to hospice

    Get PDF
    Background: Globally, the majority of people with HIV/AIDS live in sub-Saharan Africa. While the increasing availability of antiretroviral therapy is improving the outlook for many, its effects are yet to reach all of those in need and patients still present with advanced disease. This paper reports findings from qualitative interviews with patients living with AIDS and their caregivers who were receiving palliative care from Hospice Africa Uganda (HAU). We aimed to understand what motivated patients and their families to seek formal healthcare, whether there were any barriers to help- seeking and how the help and support provided to them by HAU was perceived. Methods: We invited patients with AIDS and their relatives who were newly referred to HAU to participate in qualitative interviews. Patients and carers were interviewed in their homes approximately four weeks after the patient’s enrolment at HAU. Interviews were translated, transcribed and analysed using narrative and thematic approaches. Results: Interviews were completed with 22 patients (10 women and 12 men) and 20 family caregivers, nominated by patients. Interviews revealed the extent of suffering patients endured and the strain that family caregivers experienced before help was sought or accessed. Patients reported a wide range of severe physical symptoms. Patients and their relatives reported worries about the disclosure of the AIDS diagnosis and fear of stigma. Profound poverty framed all accounts. Poverty and stigma were, depending on the patient and family situation, both motivators and barriers to help seeking behaviour. Hospice services were perceived to provide essential relief of pain and symptoms, as well as providing rehabilitative support and a sense of caring. The hospice was perceived relieve utter destitution, although it was unable to meet all the expectations that patients had. Conclusion: Hospice care was highly valued and perceived to effectively manage problems such as pain and other symptoms and to provide rehabilitation. Participants noted a strong sense of being “cared for”. However, poverty and a sense of stigma were widespread. Further research is needed to understand how poverty and stigma can be effectively managed in hospice care for patients for advanced AIDS and their families

    Electronic Excited States of Tungsten(0) Arylisocyanides

    Get PDF
    W(CNAryl)_6 complexes containing 2,6-diisopropylphenyl isocyanide (CNdipp) are powerful photoreductants with strongly emissive long-lived excited states. These properties are enhanced upon appending another aryl ring, e.g., W(CNdippPh^(OMe)_2)_6; CNdippPh^(OMe)_2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide (Sattler et al. J. Am. Chem. Soc. 2015, 137, 1198−1205). Electronic transitions and low-lying excited states of these complexes were investigated by time-dependent density functional theory (TDDFT); the lowest triplet state was characterized by time-resolved infrared spectroscopy (TRIR) supported by density functional theory (DFT). The intense absorption band of W(CNdipp)_6 at 460 nm and that of W(CNdippPh^(OMe)_2)_6 at 500 nm originate from transitions of mixed ππ*(C≡N–C)/MLCT(W → Aryl) character, whereby W is depopulated by ca. 0.4 e– and the electron-density changes are predominantly localized along two equatorial molecular axes. The red shift and intensity rise on going from W(CNdipp)_6 to W(CNdippPh^(OMe)_2)_6 are attributable to more extensive delocalization of the MLCT component. The complexes also exhibit absorptions in the 300–320 nm region, owing to W → C≡N MLCT transitions. Electronic absorptions in the spectrum of W(CNXy)_6 (Xy = 2,6-dimethylphenyl), a complex with orthogonal aryl orientation, have similar characteristics, although shifted to higher energies. The relaxed lowest W(CNAryl)_6 triplet state combines ππ* excitation of a trans pair of C≡N–C moieties with MLCT (0.21 e–) and ligand-to-ligand charge transfer (LLCT, 0.24–0.27 e–) from the other four CNAryl ligands to the axial aryl and, less, to C≡N groups; the spin density is localized along a single Aryl–N≡C–W–C≡N–Aryl axis. Delocalization of excited electron density on outer aryl rings in W(CNdippPh^(OMe)_2)_6 likely promotes photoinduced electron-transfer reactions to acceptor molecules. TRIR spectra show an intense broad bleach due to ν(C≡N), a prominent transient upshifted by 60–65 cm^(–1), and a weak down-shifted feature due to antisymmetric C≡N stretch along the axis of high spin density. The TRIR spectral pattern remains unchanged on the femtosecond-nanosecond time scale, indicating that intersystem crossing and electron-density localization are ultrafast (<100 fs)
    corecore