39 research outputs found

    Effect of impact surface in equestrian falls

    Get PDF
    34th International Conference on Biomechanics in Sports, Tsukuba, Japan, 18-22 July 2016This study examines the effect of impact surface on head kinematic response and maximum principal strain (MPS) for equestrian falls. A helmeted Hybrid III headform was dropped unrestrained onto three impact surfaces of different stiffness (steel, turf and sand) and three locations. Peak resultant linear acceleration, rotational acceleration and duration of the impact events were measured. A finite element brain model was used to calculate MPS. The results revealed that drops onto steel produced higher peak linear acceleration, rotational acceleration and MPS but lower impact durations than drops to turf and sand. However, despite lower MPS values, turf and sand impacts compared to steel impacts still represented a risk of concussion. This suggests that certification standards for equestrian helmets do not properly account for the loading conditions experienced in equestrian accidents.European Commission Horizon 2020Marie Skiodowska-Curie gran

    DNA Methylation Profiles of Primary Colorectal Carcinoma and Matched Liver Metastasis

    Get PDF
    BACKGROUND: The contribution of DNA methylation to the metastatic process in colorectal cancers (CRCs) is unclear. METHODS: We evaluated the methylation status of 13 genes (MINT1, MINT2, MINT31, MLH1, p16, p14, TIMP3, CDH1, CDH13, THBS1, MGMT, HPP1 and ERα) by bisulfite-pyrosequencing in 79 CRCs comprising 36 CRCs without liver metastasis and 43 CRCs with liver metastasis, including 16 paired primary CRCs and liver metastasis. We also performed methylated CpG island amplification microarrays (MCAM) in three paired primary and metastatic cancers. RESULTS: Methylation of p14, TIMP3 and HPP1 in primary CRCs progressively decreased from absence to presence of liver metastasis (13.1% vs. 4.3%; 14.8% vs. 3.7%; 43.9% vs. 35.8%, respectively) (P<.05). When paired primary and metastatic tumors were compared, only MGMT methylation was significantly higher in metastatic cancers (27.4% vs. 13.4%, P = .013), and this difference was due to an increase in methylation density rather than frequency in the majority of cases. MCAM showed an average 7.4% increase in DNA methylated genes in the metastatic samples. The numbers of differentially hypermethylated genes in the liver metastases increased with increasing time between resection of the primary and resection of the liver metastasis. Bisulfite-pyrosequencing validation in 12 paired samples showed that most of these increases were not conserved, and could be explained by differences in methylation density rather than frequency. CONCLUSIONS: Most DNA methylation differences between primary CRCs and matched liver metastasis are due to random variation and an increase in DNA methylation density rather than de-novo inactivation and silencing. Thus, DNA methylation changes occur for the most part before progression to liver metastasis

    Assessing women\u27s lacrosse head impacts using finite element modelling

    No full text
    Recently studies have assessed the ability of helmets to reduce peak linear and rotational acceleration for women\u27s lacrosse head impacts. However, such measures have had low correlation with injury. Maximum principal strain interprets loading curves which provide better injury prediction than peak linear and rotational acceleration, especially in compliant situations which create low magnitude accelerations but long impact durations. The purpose of this study was to assess head and helmet impacts in women\u27s lacrosse using finite element modelling. Linear and rotational acceleration loading curves from women\u27s lacrosse impacts to a helmeted and an unhelmeted Hybrid III headform were input into the University College Dublin Brain Trauma Model. The finite element model was used to calculate maximum principal strain in the cerebrum. The results demonstrated for unhelmeted impacts, falls and ball impacts produce higher maximum principal strain values than stick and shoulder collisions. The strain values for falls and ball impacts were found to be within the range of concussion and traumatic brain injury. The results also showed that men\u27s lacrosse helmets reduced maximum principal strain for follow-through slashing, falls and ball impacts. These findings are novel and demonstrate that for high risk events, maximum principal strain can be reduced by implementing the use of helmets if the rules of the sport do not effectively manage such situations

    Assessing women's lacrosse head impacts using finite element modelling

    No full text
    Recently studies have assessed the ability of helmets to reduce peak linear and rotational acceleration for women's lacrosse head impacts. However, such measures have had low correlation with injury. Maximum principal strain interprets loading curves which provide better injury prediction than peak linear and rotational acceleration, especially in compliant situations which create low magnitude accelerations but long impact durations. The purpose of this study was to assess head and helmet impacts in women's lacrosse using finite element modelling. Linear and rotational acceleration loading curves from women's lacrosse impacts to a helmeted and an unhelmeted Hybrid III headform were input into the University College Dublin Brain Trauma Model. The finite element model was used to calculate maximum principal strain in the cerebrum. The results demonstrated for unhelmeted impacts, falls and ball impacts produce higher maximum principal strain values than stick and shoulder collisions. The strain values for falls and ball impacts were found to be within the range of concussion and traumatic brain injury. The results also showed that men's lacrosse helmets reduced maximum principal strain for follow-through slashing, falls and ball impacts. These findings are novel and demonstrate that for high risk events, maximum principal strain can be reduced by implementing the use of helmets if the rules of the sport do not effectively manage such situations

    Protective capacity of an ice hockey goaltender helmet for three events associated with concussion

    No full text
    The purpose of this study was to assess the protective capacity of an ice hockey goaltender helmet for three concussive impact events. A helmeted and unhelmeted headform was used to test three common impact events in ice hockey (fall, puck impacts and shoulder collisions). Peak linear acceleration, rotational acceleration and rotational velocity as well as maximum principal strain and von Mises stress were measured for each impact condition. The results demonstrated the tested ice hockey goaltender helmet was well designed to manage fall and puck impacts but does not consistently protect against shoulder collisions and an opportunity may exist to improve helmet designs to better protect goaltenders from shoulder collisions.European Commission Horizon 2020Ontario Graduate Scholarship in Science and Technolog

    The Association among Injury Metrics for Different Events in Ice Hockey Goaltender Impact

    No full text
    2016 International Research Council on Biomechanics of Injury Conference, Malaga, Spain, 14-16 September 2016Current ice hockey goaltender helmet standards use a drop test and peak linear acceleration to evaluate performance. However, ice hockey goaltenders are exposed to impacts from collisions, falls and pucks which each create unique loading conditions. As a result, the use of peak linear acceleration as a predictor for brain trauma in current ice hockey standards may not be most appropriate. The purpose of this study was to determine how kinematic response measures correlate to maximum principal strain and von Mises stress for different impact events. A NOCSAE headform was fitted with three ice hockey goaltender helmet models and impacted under conditions representing these three different impact events (fall, puck, collision). Peak resultant linear acceleration, rotational acceleration and rotational velocity of the headform were measured. Resulting accelerations were input into the University College Dublin Brain Trauma Model, which calculated maximum principal strain and von Mises stress in the cerebrum. The results demonstrated that the relationship between injury metrics in ice hockey goaltender impacts is dependent on the impact event and velocity. As a result of these changing relationships, the inclusion of finite element analysis in test protocols may provide a more practical representation of brain loading in evaluating the performance of ice hockey goaltender helmets.European Commission Horizon 2020Ontario Graduate Scholarship in Science and TechnologyMarie Skiodowska-Curie gran

    Determining the relationship between linear and rotational acceleration and MPS for different magnitudes of classified brain injury risk in ice hockey

    No full text
    International Research Council on Biomechanics of Injury Conference, Lyon, France, 9-11 September 2015Helmets have successfully decreased the incidence of traumatic brain injuries (TBI) in ice hockey, yet the incidence of concussions has essentially remained unchanged. Current ice hockey helmet certification standards use peak linear acceleration as the principal measuring helmet performance, however peak linear acceleration may not be an appropriate variable to evaluate risk at all magnitudes of brain injury. The purpose of this study is to determine the relationship between linear acceleration, rotational acceleration and maximum principal strain (MPS) for different magnitudes of classified brain injury risk in ice hockey. A helmeted and unhelmeted Hybrid III headform were impacted to the side of the head at two sites and at three velocities under conditions representing three common mechanisms of injury. Resulting linear and rotational accelerations were used as input for the University College Dublin Brain Trauma Model (UCDBTM), to calculate MPS in the brain. The resulting MPS magnitudes were used to separate the data into three groups: low risk; concussion; and TBI. The results demonstrate that the relationship between injury metrics in ice hockey impacts is dependent on the magnitude of classified injury risk and the mechanism of injury

    Determining the relationship between linear and rotational acceleration and MPS for different magnitudes of classified brain injury risk in ice hockey

    No full text
    International Research Council on Biomechanics of Injury Conference, Lyon, France, 9-11 September 2015Helmets have successfully decreased the incidence of traumatic brain injuries (TBI) in ice hockey, yet the incidence of concussions has essentially remained unchanged. Current ice hockey helmet certification standards use peak linear acceleration as the principal measuring helmet performance, however peak linear acceleration may not be an appropriate variable to evaluate risk at all magnitudes of brain injury. The purpose of this study is to determine the relationship between linear acceleration, rotational acceleration and maximum principal strain (MPS) for different magnitudes of classified brain injury risk in ice hockey. A helmeted and unhelmeted Hybrid III headform were impacted to the side of the head at two sites and at three velocities under conditions representing three common mechanisms of injury. Resulting linear and rotational accelerations were used as input for the University College Dublin Brain Trauma Model (UCDBTM), to calculate MPS in the brain. The resulting MPS magnitudes were used to separate the data into three groups: low risk; concussion; and TBI. The results demonstrate that the relationship between injury metrics in ice hockey impacts is dependent on the magnitude of classified injury risk and the mechanism of injury

    Protective Capacity of Ice Hockey Helmets against Different Impact Events

    No full text
    In ice hockey, concussions can occur as a result of many different types of impact events, however hockey helmets are certified using a single injury scenario, involving drop tests to a rigid surface. The purpose of this study is to measure the protective capacity of ice hockey helmets for different impact events in ice hockey. A helmeted and unhelmeted Hybrid III headform were impacted simulating falls, elbow, shoulder and puck impacts in ice hockey. Linear and rotational acceleration and maximum principal strain (MPS) were measured. A comparison of helmeted and unhelmeted impacts found significant differences existed in most conditions (p 0.05). Impacts to the ice hockey helmet tested resulted in acceleration levels below reported ranges of concussion and TBI for falls up to 5 m/s, elbow collisions, and low velocity puck impacts but not for shoulder collisions or high velocity puck impacts and falls. The helmet tested reduced MPS below reported ranges of concussion and TBI for falls up to 5 m/s but not for the other impact events across all velocities and locations. This suggests that the ice hockey helmet tested is unable to reduce engineering parameters below reported ranges of concussion and TBI for impact conditions which do not represent a drop against a rigid surface
    corecore