The Association among Injury Metrics for Different Events in Ice Hockey Goaltender Impact

Abstract

2016 International Research Council on Biomechanics of Injury Conference, Malaga, Spain, 14-16 September 2016Current ice hockey goaltender helmet standards use a drop test and peak linear acceleration to evaluate performance. However, ice hockey goaltenders are exposed to impacts from collisions, falls and pucks which each create unique loading conditions. As a result, the use of peak linear acceleration as a predictor for brain trauma in current ice hockey standards may not be most appropriate. The purpose of this study was to determine how kinematic response measures correlate to maximum principal strain and von Mises stress for different impact events. A NOCSAE headform was fitted with three ice hockey goaltender helmet models and impacted under conditions representing these three different impact events (fall, puck, collision). Peak resultant linear acceleration, rotational acceleration and rotational velocity of the headform were measured. Resulting accelerations were input into the University College Dublin Brain Trauma Model, which calculated maximum principal strain and von Mises stress in the cerebrum. The results demonstrated that the relationship between injury metrics in ice hockey goaltender impacts is dependent on the impact event and velocity. As a result of these changing relationships, the inclusion of finite element analysis in test protocols may provide a more practical representation of brain loading in evaluating the performance of ice hockey goaltender helmets.European Commission Horizon 2020Ontario Graduate Scholarship in Science and TechnologyMarie Skiodowska-Curie gran

    Similar works