1,716 research outputs found

    The regulation of matrix metalloproteinases and their inhibitors

    Get PDF
    The matrix metalloproteinases (MMP) are a family of 23 enzymes in man. These enzymes were originally described as cleaving extracellular matrix (ECM) substrates with a predominant role in ECM homeostasis, but it is now clear that they have much wider functionality. Control over MMP and/or tissue inhibitor of metalloproteinases (TIMP) activity in vivo occurs at different levels and involves factors such as regulation of gene expression, activation of zymogens and inhibition of active enzymes by specific inhibitors. Whilst these enzymes and inhibitors have clear roles in physiological tissue turnover and homeostasis, if control of their expression or activity is lost, they contribute to a number of pathologies including e.g. cancer, arthritis and cardiovascular disease. The expression of many MMPs and TIMPs is regulated at the level of transcription by a variety of growth factors, cytokines and chemokines, though post-transcriptional pathways may contribute to this regulation in specific cases. The contribution of epigenetic modifications has also been uncovered in recent years. The promoter regions of many of these genes have been, at least partly, characterised including the role of identified single nucleotide polymorphisms. This article aims to review current knowledge across these gene families and use a bioinformatic approach to fill the gaps where no functional data are available

    Two- And Three-body Electron-ion Recombination In Carbon Dioxide

    Get PDF
    The electron-ion recombination rate in carbon dioxide was measured as a function of electric field strength and gas pressure. The separate effects of two- and three-body recombination was observed, and the respective rate constants obtained. The results indicate that three-body recombination is dominant at low field strengths for gas pressures above 1 atm, whereas two-body recombination is dominant at high field strengths

    The potential for dietary factors to prevent or treat osteoarthritis

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease for which there are no disease-modifying drugs. It is a leading cause of disability in the UK. Increasing age and obesity are both major risk factors for OA and the health and economic burden of this disease will increase in the future. Focusing on compounds from the habitual diet that may prevent the onset or slow the progression of OA is a strategy that has been under-investigated to date. An approach that relies on dietary modification is clearly attractive in terms of risk/benefit and more likely to be implementable at the population level. However, before undertaking a full clinical trial to examine potential efficacy, detailed molecular studies are required in order to optimise the design. This review focuses on potential dietary factors that may reduce the risk or progression of OA, including micronutrients, fatty acids, flavonoids and other phytochemicals. It therefore ignores data coming from classical inflammatory arthritides and nutraceuticals such as glucosamine and chondroitin. In conclusion, diet offers a route by which the health of the joint can be protected and OA incidence or progression decreased. In a chronic disease, with risk factors increasing in the population and with no pharmaceutical cure, an understanding of this will be crucial

    Ultrafast Excited-State Dynamics of Rhenium(I) Photosensitizers [Re(Cl)(CO)_(3)(N,N)] and [Re(imidazole)(CO)_(3)(N,N)]^+: Diimine Effects

    Get PDF
    Femto- to picosecond excited-state dynamics of the complexes [Re(L)(CO)_(3)(N,N)]^n (N,N = bpy, phen, 4,7-dimethyl-phen (dmp); L = Cl, n = 0; L = imidazole, n = 1+) were investigated using fluorescence up-conversion, transient absorption in the 650−285 nm range (using broad-band UV probe pulses around 300 nm) and picosecond time-resolved IR (TRIR) spectroscopy in the region of CO stretching vibrations. Optically populated singlet charge-transfer (CT) state(s) undergo femtosecond intersystem crossing to at least two hot triplet states with a rate that is faster in Cl (~100 fs)^(−1) than in imidazole (~150 fs)^(−1) complexes but essentially independent of the N,N ligand. TRIR spectra indicate the presence of two long-lived triplet states that are populated simultaneously and equilibrate in a few picoseconds. The minor state accounts for less than 20% of the relaxed excited population. UV−vis transient spectra were assigned using open-shell time-dependent density functional theory calculations on the lowest triplet CT state. Visible excited-state absorption originates mostly from mixed L;N,N^(•−) → Re^(II) ligand-to-metal CT transitions. Excited bpy complexes show the characteristic sharp near-UV band (Cl, 373 nm; imH, 365 nm) due to two predominantly ππ*(bpy^(•−)) transitions. For phen and dmp, the UV excited-state absorption occurs at 305 nm, originating from a series of mixed ππ* and Re → CO;N,N•− MLCT transitions. UV−vis transient absorption features exhibit small intensity- and band-shape changes occurring with several lifetimes in the 1−5 ps range, while TRIR bands show small intensity changes (≤5 ps) and shifts (~1 and 6−10 ps) to higher wavenumbers. These spectral changes are attributable to convoluted electronic and vibrational relaxation steps and equilibration between the two lowest triplets. Still slower changes (≥15 ps), manifested mostly by the excited-state UV band, probably involve local-solvent restructuring. Implications of the observed excited-state behavior for the development and use of Re-based sensitizers and probes are discussed

    Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease

    Get PDF
    Oxidative stress is proposed as an important factor in osteoarthritis (OA). To investigate the expression of the three superoxide dismutase (SOD) antioxidant enzymes in OA. SOD expression was determined by real-time PCR and immunohistochemistry using human femoral head cartilage. SOD2 expression in Dunkin–Hartley guinea pig knee articular cartilage was determined by immunohistochemistry. The DNA methylation status of the SOD2 promoter was determined using bisulphite sequencing. RNA interference was used to determine the consequence of SOD2 depletion on the levels of reactive oxygen species (ROS) using MitoSOX and collagenases, matrix metalloproteinase 1 (MMP-1) and MMP-13, gene expression. All three SOD were abundantly expressed in human cartilage but were markedly downregulated in end-stage OA cartilage, especially SOD2. In the Dunkin–Hartley guinea pig spontaneous OA model, SOD2 expression was decreased in the medial tibial condyle cartilage before, and after, the development of OA-like lesions. The SOD2 promoter had significant DNA methylation alterations in OA cartilage. Depletion of SOD2 in chondrocytes increased ROS but decreased collagenase expression. This is the first comprehensive expression profile of all SOD genes in cartilage and, importantly, using an animal model, it has been shown that a reduction in SOD2 is associated with the earliest stages of OA. A decrease in SOD2 was found to be associated with an increase in ROS but a reduction of collagenase gene expression, demonstrating the complexities of ROS function

    Induction of HO-1 in tissue macrophages and monocytes in fatal falciparum malaria and sepsis

    Get PDF
    BACKGROUND: As well as being inducible by haem, haemoxygenase -1 (HO-1) is also induced by interleukin-10 and an anti-inflammatory prostaglandin, 15d PGJ(2), the carbon monoxide thus produced mediating the anti-inflammatory effects of these molecules. The cellular distribution of HO-1, by immunohistochemistry, in brain, lung and liver in fatal falciparum malaria, and in sepsis, is reported. METHODS: Wax sections were stained, at a 1:1000 dilution of primary antibody, for HO-1 in tissues collected during paediatric autopsies in Blantyre, Malawi. These comprised 37 acutely ill comatose patients, 32 of whom were diagnosed clinically as cerebral malaria and the other 5 as bacterial diseases with coma. Another 3 died unexpectedly from an alert state. Other control tissues were from Australian adults. RESULTS: Apart from its presence in splenic red pulp macrophages and microhaemorrhages, staining for HO-1 was confined to intravascular monocytes and certain tissue macrophages. Of the 32 clinically diagnosed cerebral malaria cases, 11 (category A) cases had negligible histological change in the brain and absence of or scanty intravascular sequestration of parasitized erythrocytes. Of these 11 cases, eight proved at autopsy to have other pathological changes as well, and none of these eight showed HO-1 staining within the brain apart from isolated moderate staining in one case. Two of the three without another pathological diagnosis showed moderate staining of scattered monocytes in brain vessels. Six of these 11 (category A) cases exhibited strong lung staining, and the Kupffer cells of nine of them were intensely stained. Of the seven (category B) cases with no histological changes in the brain, but appreciable sequestered parasitised erythrocytes present, one was without staining, and the other six showed strongly staining, rare or scattered monocytes in cerebral vessels. All six lung sections not obscured by neutrophils showed strong staining of monocytes and alveolar macrophages, and all six available liver sections showed moderate or strong staining of Kupffer cells. Of the 14 (category C) cases, in which brains showed micro-haemorrhages and intravascular mononuclear cell accumulations, plus sequestered parasitised erythrocytes, all exhibited strong monocyte HO-1 staining in cells forming accumulations and scattered singly within cerebral blood vessels. Eleven of the available and readable 13 lung sections showed strongly staining monocytes and alveolar macrophages, and one stained moderately. All of the 14 livers had strongly stained Kupffer cells. Of five cases of comatose culture-defined bacterial infection, three showed a scattering of stained monocytes in vessels within the brain parenchyma, three had stained cells in lung sections, and all five demonstrated moderately or strongly staining Kupffer cells. Brain sections from all three African controls, lung sections from two of them, and liver from one, showed no staining for HO-1, and other control lung and liver sections showed few, palely stained cells only. Australian-origin adult brains exhibited no staining, whether the patients had died from coronary artery disease or from non-infectious, non-cerebral conditions CONCLUSIONS: Clinically diagnosed 'cerebral malaria' in children includes some cases in whom malaria is not the only diagnosis with the hindsight afforded by autopsy. In these patients there is widespread systemic inflammation, judged by HO-1 induction, at the time of death, but minimal intracerebral inflammation. In other cases with no pathological diagnosis except malaria, there is evidence of widespread inflammatory responses both in the brain and in other major organs. The relative contributions of intracerebral and systemic host inflammatory responses in the pathogenesis of coma and death in malaria deserve further investigation
    corecore